

## Universidad Técnica De Manabí Facultad de Ciencias Matemáticas, Físicas y Químicas Carrera de Ingeniería Civil

Trabajo de Titulación
Previo a la obtención del título de:
Ingeniero Civil

"Análisis del Comportamiento de Vigas de Hormigón Armado con Modelos de Hormigón Confinado y Sin Confinamiento".

#### **Autores:**

Juan Fernando Quiroz Alonzo Danny Adrián Moreira Lectong

Tutor: Ing. Yordy I. Mieles Bravo Mg. Sc.

#### **DEDICATORIA**

A Dios, primeramente, quien me ha permitido llegar hasta esta etapa de mi vida y ha proveído todo lo necesario para realizar este trabajo y culminar mi carrera.

A mis amados padres, Honorio y María, quienes han sido ejemplo y fuente de instrucción para mí en todos los aspectos de la vida, quienes me han apoyado y guiado en todas mis metas, en especial en la obtención de mi título universitario, y quienes con su esfuerzo constante me han dado los recursos que he requerido para estudiar.

A mi querida hermana Bianca, por su ánimo y apoyo constantes hacia mí, y por ser como una amiga en los momentos en que he necesitado de su ayuda.

A mi querida novia Gema, quien ha sido fuente de inspiración para superarme en todas las cosas y quien me ha brindado su ayuda incondicional siempre que la he requerido.

A todos mis amigos y familiares que de alguna u otra manera me han apoyado en el transcurso de mi carrera y en la elaboración de esta investigación.

FERNANDO QUIROZ ALONZO

#### **DEDICATORIA**

El presente trabajo se lo dedico principalmente a mi madre que con su apoyo incondicional y esfuerzo me ubicó en el camino de la grandeza.

Al cabeza dura de mi hermano por la motivación que me dio para seguir la carrera de ingeniería civil.

A mi padre por sus enseñanzas de procesos constructivos y de perseverancia ante los problemas que pueden poner de rodillas a un hombre,

A mi hermana que con su apoyo moral y de trabajo me permitió seguir con mis estudios.

A mis amigos que me dieron cobijo en sus hogares en los momentos que más los necesitaba.

A mi amigo y compañero de trabajo de titulación que me ayudó a cambiar mi comportamiento académico mejorando el rendimiento del mismo.

A mi hermosa novia que me enseñó que en la vida lo más importante no es el dinero sino la felicidad.

DANNY MOREIRA LECTONG

#### **AGRADECIMIENTO**

Al culminar el presente trabajo de titulación, queremos expresar nuestros más sinceros agradecimientos a la Universidad Técnica de Manabí y especialmente a su Escuela de Ingeniería Civil y su excelente cuerpo de Docentes que han aportado en nuestra formación como profesionales.

Agradecemos de manera muy especial al Ing. Yordy Mieles Bravo, nuestro tutor de trabajo de titulación, por su apoyo, conocimiento e instrucciones impartidas, las cuales fueron fundamentales para la realización de esta investigación.

De la misma manera al Ing. Carlos Centeno Mero y a los demás docentes de la Facultad de Ciencias Matemáticas, Físicas y Químicas que ayudaron con el desarrollo del presente trabajo.

Por último, a todas aquellas personas que de una u otra manera colaboraron para la elaboración de esta investigación.

LOS AUTORES

## CERTIFICACIÓN DEL TUTOR DEL TRABAJO DE TITULACIÓN

#### **CERTIFICACIÓN**

Quien suscribe la presente señor Ing. Yordy Ivonne Mieles Bravo, docente de la Universidad Técnica de Manabí, de la Facultad de Ciencias Matemáticas Físicas y Química; en mi calidad de Tutor del trabajo de titulación "ANÁLISIS DEL COMPORTAMIENTO DE VIGAS DE HORMIGÓN ARMADO CON MODELOS DE HORMIGÓN CONFINADO Y SIN CONFINAMIENTO" desarrollada por los profesionistas: Señores Juan Fernando Quiroz Alonzo y Danny Adrián Moreira Lectong en este contexto, tengo a bien extender la presente certificación en base a lo determinado en el Art. 8 del reglamento de titulación en vigencia, habiendo cumplido con los siguientes procesos:

- Se verificó que el trabajo desarrollado por los profesionistas cumple con el diseño metodológico y rigor científico según la modalidad de titulación aprobada.
- Se asesoró oportunamente al estudiante en el desarrollo del trabajo de titulación.
- Presentaron el informe del avance del trabajo de titulación a la Comisión de Titulación Especial de la Facultad.
- Se confirmó la originalidad del trabajo de titulación.
- Se entregó al revisor una certificación de haber concluido el trabajo de titulación.

Cabe mencionar que durante el desarrollo del trabajo de titulación el profesionistas puso mucho interés en el desarrollo de cada una de las actividades de acuerdo al cronograma trazado.

Particular que certifico para los fines pertinentes

Ing. Yordy I. Mieles Bravo Mg. Sc. TUTOR

## CERTIFICACIÓN DEL REVISOR DEL TRABAJO DE TITULACIÓN

#### **CERTIFICACIÓN**

Luego de haber realizado el trabajo de titulación, en la modalidad de investigación y que lleva por tema: "ANÁLISIS DEL COMPORTAMIENTO DE VIGAS DE HORMIGÓN ARMADO CON MODELOS DE HORMIGÓN CONFINADO Y SIN CONFINAMIENTO" desarrollado por los señores Juan Fernando Quiroz Alonzo con cédula No. 1310179492 y Danny Adrián Moreira Lectong con cédula No. 1311899528, previo a la obtención del título de INGENIERO CIVIL, bajo la tutoría y control del señor Ing. Yordy Ivonne Mieles Bravo, docente de la Facultad de Ciencias Matemáticas, Físicas y Químicas y cumpliendo con todos los requisitos del nuevo reglamento de la Unidad de Titulación Especial de la Universidad Técnica de Manabí, aprobada por el H. Consejo Universitario, cumplo con informar que en la ejecución del mencionado trabajo de titulación, su autor:

- Han respetado los derechos de autor correspondiente a tener menos del 10 % de similitud con otros documentos existentes en el repositorio
- Han aplicado correctamente el manual de estilo de la Universidad Andina Simón Bolívar de Ecuador.
- Las conclusiones guardan estrecha relación con los objetivos planteados.
- El trabajo posee suficiente argumentación técnica científica, evidencia en el contenido bibliográfico consultado.
- Mantiene rigor científico en las diferentes etapas de su desarrollo.
- Sin más que informar suscribo este documento NO VINCULANTE para los fines legales pertinentes.

Ing. Julio Hernán Cevallos Centeno Mg. Sc.

REVISOR DEL TRABAJO DE TITULACIÓN

### DECLARACIÓN DE DERECHO DE AUTOR

Quienes firman la presente, profesionistas; JUAN FERNANDO QUIROZ ALONZO y DANNY ADRIÁN MOREIRA LECTONG, en calidad de autores del trabajo de titulación realizada sobre "ANÁLISIS DEL COMPORTAMIENTO DE VIGAS DE HORMIGÓN ARMADO CON MODELOS DE HORMIGÓN CONFINADO Y SIN CONFINAMIENTO", por la presente autorizo a la UNIVERSIDAD TÉCNICA DE MANABÍ, hacer uso de todos los contenidos que me pertenecen o de parte de los que contienen este proyecto, con fines estrictamente académicos o de investigación. Los derechos que como autor me corresponden, con excepción de la presente autorización, seguirán vigentes a nuestro favor, de conformidad con lo establecido en los artículos 5, 6, 8, 19 y demás pertinentes de la Ley de Propiedad Intelectual y su Reglamento. Así mismo las conclusiones y recomendaciones constantes en este texto, son criterios netamente personales y asumimos con responsabilidad la descripción de las mismas.

Juan Fernando Quiroz Alonzo
AUTOR

Danny Adrián Moreira Lectong
AUTOR

# ÍNDICE

| TEMA                                                             | 1    |
|------------------------------------------------------------------|------|
| CAPÍTULO I                                                       | 2    |
| 1.1. PLANTEAMIENTO DEL PROBLEMA                                  | 2    |
| 1.2. ANTECEDENTES                                                | 3    |
| 1.3. JUSTIFICACIÓN                                               | 4    |
| 1.4. MARCO TEÓRICO                                               | 5    |
| 1.4.1. Modelos Constitutivos del Hormigón Sin Confinamiento      | 5    |
| 1.4.2. Modelos Constitutivos del Hormigón Confinado              | 9    |
| 1.4.3. Modelos Constitutivos del Acero de Refuerzo               | 13   |
| 1.4.4. Transformación de Leyes de Comportamiento del Hormigón    | n no |
| Lineales en un Diagrama Rectangular Equivalente                  | 16   |
| 1.4.5. Métodos para el cálculo de Diagramas de Momento-Curvatura | 23   |
| 1.4.6. Ductilidad local por curvatura                            |      |
| CAPÍTULO II                                                      | 30   |
| 2.1. VISUALIZACIÓN DEL ALCANCE DEL ESTUDIO                       | 30   |
| 2.2. HIPÓTESIS                                                   | 31   |
| 2.3. DEFINICIÓN DE VARIABLES                                     | 32   |
| 2.3.1. VARIABLE INDEPENDIENTE: COMPORTAMIENTO                    | DE   |
| VIGAS                                                            | 32   |
| 2.3.2. VARIABLE DEPENDIENTE: MODELOS DE HORMIGÓN                 | 33   |
| 2.4. OBJETIVOS                                                   | 34   |
| 2.4.1. Objetivo General                                          | 34   |
| 2.4.2. Objetivos Específicos                                     | 34   |
| 2.5. DESARROLLO DEL DISEÑO DE LA INVESTIGACIÓN                   | 35   |
| 2.5.1. Esquema General                                           | 35   |
| 2.5.2. Software Utilizado                                        | 35   |

| 2.   | 5.3.          | Materiales para el cálculo                                                         |
|------|---------------|------------------------------------------------------------------------------------|
| 2.   | 5.4.          | Secciones para el cálculo                                                          |
| 2.   | 5.5.          | Determinación de los coeficientes $\alpha_I$ y $\beta_I$ para los modelos de Park, |
| Н    | ognest        | ad, Rüsch y Whitney (ACI)                                                          |
| 2.   | 5.6.          | Cálculo de los valores de momento y de curvatura para los modelos                  |
| de   | Park,         | Hognestad, Rüsch y Whitney (ACI)                                                   |
|      | 5.7.<br>Mand  | Cálculo de los valores de momento y de curvatura para el modelo der (confinado)    |
| 2.   | 5.8.          | Representación gráfica de las curvas de Momento-Curvatura $(M-\varphi)$            |
| de   | todos         | s los modelos                                                                      |
| CAF  | ÍTUL          | O III                                                                              |
| 3.1. | DEF           | INICIÓN Y SELECCIÓN DE LA MUESTRA 69                                               |
| 3.2. | REC           | OLECCIÓN DE LA INFORMACIÓN 69                                                      |
| 3.   | 2.1. I        | Estadísticas                                                                       |
| 3.   | 2.2. <b>v</b> | Verificación de los Objetivos                                                      |
| 3.3. | ANÁ           | LISIS DE LOS DATOS74                                                               |
| CAF  | ÍTUL          | O IV                                                                               |
| 4.1. | CON           | ICLUSIONES                                                                         |
| 4.2. | REC           | OMENDACIONES                                                                       |
| CAF  | ÍTUL          | O V                                                                                |
| 5.1. | PRE           | SUPUESTO79                                                                         |
| 5.2. | CRO           | NOGRAMA                                                                            |
| 5.3. | BIBI          | LIOGRAFÍA81                                                                        |
| 5.4. | ANE           | XOS84                                                                              |

## ÍNDICE DE FIGURAS

| Figura 1. Curva esfuerzo-deformación del hormigón sin confinamiento de            |
|-----------------------------------------------------------------------------------|
| Hognestad (1951) 6                                                                |
| Figura 2. Curva esfuerzo-deformación del hormigón sin confinamiento de Rüsch 7    |
| Figura 3. Curva esfuerzo-deformación del hormigón sin confinamiento de            |
| Todeschini (1964)                                                                 |
| Figura 4. Valores de β1 en función de f'c (en MPa)                                |
| Figura 5. Curva esfuerzo-deformación del hormigón sin confinamiento de Whitney    |
| (1942)                                                                            |
| Figura 6. Modelo constitutivo del hormigón confinado de Kent y Park 11            |
| Figura 7. Modelo constitutivo del hormigón confinado de Park (1975) 12            |
| Figura 8. Modelo constitutivo del hormigón confinado de Mander (1988) 13          |
| Figura 9. Modelo constitutivo bilineal del acero                                  |
| Figura 10. Modelo constitutivo trilineal del acero                                |
| Figura 11. Modelo constitutivo trilineal (curva completa) del acero               |
| Figura 12. Transformación de la primera rama del modelo de Rüsch                  |
| Figura 13. Transformación del diagrama de irregular en uno regular                |
| Figura 14. Viga en flexión 24                                                     |
| Figura 15. Cálculo de esfuerzos para cada dovela (método de las fibras)           |
| Figura 16. Cálculo de esfuerzos para cada fila de acero (método de las fibras) 26 |
| Figura 17. Ubicación del nuevo eje neutro (método de las fibras)                  |
| Figura 18. Cálculo de momentos resistentes (método de las fibras)                 |
| Figura 19. Transformación del modelo constitutivo del hormigón a uno rectangular  |
| equivalente29                                                                     |
| Figura 20. Diagramas de momento-curvatura (Sección 1)                             |
| Figura 21.Diagramas de momento-curvatura [ampliados en x] (Sección 1) 53          |
| Figura 22. Diagramas de momento-curvatura (Sección 2)                             |
| Figura 23.Diagramas de momento-curvatura [ampliados en x] (Sección 2) 60          |
| Figura 24. Diagramas de momento-curvatura (Sección 3)                             |
| Figura 25 Diagramas de momento-curvatura [ampliados en x] (Sección 3) 67          |

## ÍNDICE DE TABLAS

| Tabla 1. Definiciones básicas para el cálculo de diagramas de momento-curvatura | 23   |
|---------------------------------------------------------------------------------|------|
| Tabla 2. Resumen de las ecuaciones de $\alpha_I$ y $\beta_I$                    | . 38 |
| Tabla 3. Cálculo con el modelo de Park (Sección 1)                              | 47   |
| Tabla 4. Cálculo con el modelo de Hognestad (Sección 1)                         | 48   |
| Tabla 5. Cálculo con el modelo de Rüsch (Sección 1)                             | 49   |
| Tabla 6. Cálculo con el modelo de Whitney (Sección 1)                           | . 50 |
| Tabla 7. Cálculo con el modelo de Mander (Sección 1)                            | . 51 |
| Tabla 8. Cálculo con el modelo de Park (Sección 2)                              | . 54 |
| Tabla 9. Cálculo con el modelo de Hognestad (Sección 2)                         | . 55 |
| Tabla 10. Cálculo con el modelo de Rüsch (Sección 2)                            | . 56 |
| Tabla 11. Cálculo con el modelo de Whitney (Sección 2)                          | . 57 |
| Tabla 12. Cálculo con el modelo de Mander (Sección 2)                           | . 58 |
| Tabla 13. Cálculo con el modelo de Park (Sección 3)                             | 61   |
| Tabla 14. Cálculo con el modelo de Hognestad (Sección 3)                        |      |
| Tabla 15. Cálculo con el modelo de Rüsch (Sección 3)                            | 63   |
| Tabla 16. Cálculo con el modelo de Whitney (Sección 3)                          | 64   |
| Tabla 17. Cálculo con el modelo de Mander (Sección 3)                           | 65   |
| Tabla 18. Resumen de momentos y curvaturas (Sección 1)                          | 68   |
| Tabla 19. Resumen de momentos y curvaturas (Sección 2)                          | 68   |
| Tabla 20. Resumen de momentos y curvaturas (Sección 3)                          | 68   |

#### RESUMEN

El presente trabajo investigativo surge debido a la necesidad de exactitud que se debe tener en el diseño de estructura de hormigón armado.

Se muestra una comparación de los diagramas de momento-curvatura para varias secciones de viga de hormigón armado propuestas utilizando diferentes modelos constitutivos del hormigón, tanto aquellos que consideran el aporte de resistencia de la armadura transversal como los que no lo hacen.

En el Capítulo I se describen los diferentes modelos constitutivos para el hormigón confinado, el hormigón no confinado y el acero de refuerzo. Se detalla el método de transformación de los coeficientes para el cálculo del diagrama rectangular equivalente para la mayoría de los modelos empleados. Además se explican dos métodos para el cálculo de los diagramas de momento-curvatura.

En el Capítulo II se definen el alcance, la hipótesis planteada, las variables y los objetivos de la investigación. En esta parte también se desarrolla el trabajo, definiéndose el método de cálculo, los materiales, las secciones para el análisis, el software que se utilizó y los procesos para el cálculo de las curvas momento-curvatura. Luego se muestran los resultados de los cálculos y se representan gráficamente los diagramas.

En el tercer capítulo se muestra información, criterios y opiniones, obtenidos por medio de entrevistas a de expertos en diseño de estructuras de hormigón armado, acerca de modelos constitutivos de los materiales y de los métodos de momento-curvatura.

Finalmente, en el Capítulo IV, se presentan las conclusiones a las que se llegó por medio del cálculo y comparación de los diagramas de momento-curvatura con los distintos modelos constitutivos.

#### **SUMMARY**

This research work arises because of the need for accuracy that must there be in designing reinforced concrete structures.

A comparison of moment-curvature diagrams for various proposed sections of reinforced concrete beam, using different concrete constitutive models -those who consider the resistance contribution of transverse reinforcement as those who do not-, is shown.

In Chapter I the different constitutive models for confined concrete, unconfined concrete and reinforcement steel are described. It details the method of coefficients transformation for calculating the equivalent rectangular diagram for most of the employed models. Additionally, two methods for calculating the moment-curvature diagrams are explained.

In Chapter II the range, the hypothesis, variables and objectives of the research are defined. In this part the work is developed, after defining the calculation method, the materials, the sections for analysis, the employed software and the processes used for the calculation of moment-curvature curves. Then the results of the calculations are displayed and the diagrams are plotted.

In the third chapter some information, criteria and opinions, obtained through interviews -about constitutive models of materials and methods of moment-curvature-with experts in designing reinforced concrete structures, are shown.

Finally, in Chapter IV, the conclusions reached by calculating and comparing the moment-curvature diagrams with different constitutive models are presented.

### **TEMA**

ANÁLISIS DEL COMPORTAMIENTO DE VIGAS DE HORMIGÓN ARMADO CON MODELOS DE HORMIGÓN CONFINADO Y SIN CONFINAMIENTO.

### **CAPÍTULO I**

#### 1.1. PLANTEAMIENTO DEL PROBLEMA

El diseño de los elementos de una estructura de hormigón armado debe garantizar seguridad y a la vez economía, es decir, las secciones deben ser de dimensiones tales que puedan resistir los esfuerzos a flexión y a compresión, pero que no se excedan a las secciones requeridas.

Hasta ahora, debido a que normas de construcción como la NEC y el ACI lo recomiendan, los ingenieros civiles han diseñado estructuras de hormigón armado considerando modelos constitutivos de hormigón no confinado, lo cual crea un incremento en las secciones requeridas de los elementos estructurales.

Es necesario que las dimensiones de un elemento estructural sean mayoradas, para garantizar seguridad, pero al momento de diseñar con modelos constitutivos de hormigón no confinado se obtiene secciones exageradamente conservadoras, y éstas crean un aumento en el presupuesto de una obra civil.

Esta propuesta permitirá entender el comportamiento de vigas a flexión a través de diagramas de momento-curvatura con modelos de hormigón confinado (los cuales representan el comportamiento real del hormigón), para utilizarlos en el cálculo y diseño de las estructuras de hormigón armado y de esa manera hallar las secciones ideales.

#### 1.2. ANTECEDENTES

Investigaciones desarrolladas por doctorantes de la Universidad Técnica de Manabí sobre vigas de hormigón armado buscan desarrollar un modelo propicio que describa el comportamiento de una sección de viga con un modelo constitutivo de los materiales que sean adecuados al real comportamiento del elemento.

En el comportamiento de la sección desempeña un papel fundamental el modelo que se adopte para los materiales. Un hormigón no confinado ofrece una respuesta adecuada a la compresión, pero es débil en tracción, limitando su aplicabilidad como material estructural. Para resistir las tracciones se emplea refuerzo en forma de barras en los lugares del elemento donde actúa esta solicitación, restringiendo el desarrollo de grietas originadas por la escasa resistencia a la tracción del hormigón, pero aun hoy existen muchos modelos de comportamiento del hormigón que no consideran la influencia de los estribos en la curva esfuerzo – deformación a compresión de este material.

En la actualidad se reconoce que el refuerzo no se limita solo a la resistir la tracción, se ha encontrado además que añadirlo en las zonas comprimidas incrementa la tenacidad de elementos en flexión, disminuyendo las deflexiones a largo plazo (Nilson 2010), mientras que el uso de refuerzo transversal asegura un mayor confinamiento al hormigón, aumentando de forma indirecta su resistencia a la compresión; además, los códigos como el ACI 318-14 norman su uso y cantidad colocada.

#### 1.3. JUSTIFICACIÓN

Parte del diseño de una estructura es conocer los diagramas momento-curvatura de cada uno de sus elementos, con el fin de saber si los momentos resistentes de éstos son los necesarios para soportar las solicitaciones externas y si poseen suficiente capacidad de ductilidad por curvatura para no presentar fallas frágiles ante la flexión.

Para el análisis de las secciones de hormigón armado se debe buscar modelos constitutivos que describan el correcto comportamiento del elemento, como los modelos constitutivos para hormigón confinado y los modelos para el acero que consideran la etapa de endurecimiento posfluencia.

Debido a la facilidad de cálculo y que los normas de diseño de estructuras de hormigón armado lo sugieren, se suele emplear solamente modelos constitutivos para hormigón sin confinamiento y modelos bilineales para el acero, los cuales son bastante conservadores al momento de realizar un diseño estructural.

Al analizar una sección de hormigón armado utilizando los modelos de comportamiento que se ajusten más a la realidad, se tendrá un diseño más preciso, y por ende, estructuras seguras y menos costosas.

En este trabajo se busca aportar a las líneas de investigación abiertas en la Carrera de Ingeniería Civil, además de contribuir con una nueva visión, mediante el análisis de secciones con el método de momento-curvatura, de cómo se comportan las vigas con modelos de hormigón confinado y no confinado.

#### 1.4. MARCO TEÓRICO

#### 1.4.1. Modelos Constitutivos del Hormigón Sin Confinamiento

El hormigón simple o sin confinamiento es un material sumamente resistente a los esfuerzos de compresión, pero muy débil a los esfuerzos de tracción. Es necesario conocer la relación que existe entre el esfuerzo que se le aplique y la deformación que éste obtiene para saber cuál será su aporte como material estructural en combinación con el acero. Varios autores han estudiado el comportamiento del hormigón no confinado, desarrollando así varios modelos que lo describen, tales como el modelo de Jensen o bloque trapezoidal, el modelo de Hognestad (1955), el bloque rectangular del ACI o modelo de Whitney (1942), el modelo de Todeschini (1964) y el modelo de Rüsch.

#### 1.4.1.1. Modelo de Hognestad

Es uno de los modelos constitutivos del hormigón sin confinamiento más conocidos. Éste puede ser aplicado en elementos estructurales de secciones cuadradas y circulares.

El modelo consta de dos ramas:

La primera rama es una parábola de segundo grado que va desde que el esfuerzo ejercido es cero hasta que el hormigón alcanza su máxima resistencia (Hognestad, Hanson y McHenry 1951). Esta rama está definida por la expresión:

$$fc = f'c \left[ \frac{2\varepsilon_c}{\varepsilon_0} - \left( \frac{\varepsilon_c}{\varepsilon_0} \right)^2 \right]; \quad 0 \le \varepsilon_c \le \varepsilon_0$$

La segunda rama es una recta con una pendiente  $\Phi$ , que representa la disminución de la resistencia del hormigón, y va desde la deformación en la resistencia máxima hasta la deformación última. La ecuación de la pendiente es:

$$\phi \approx \frac{3f'c}{20(\varepsilon_u - \varepsilon_0)}$$

El valor de la deformación del hormigón al lograr su resistencia máxima está dado por la siguiente expresión:

$$\varepsilon_0 = \frac{2f'c}{E_c}$$

donde:

 $E_c$ : Módulo de elasticidad del hormigón

f'c: Resistencia máxima a la compresión del hormigón

 $\varepsilon_0\,$ : Deformación unitaria cuando el hormigón alcanza su resistencia máxima

Cabe mencionar que para el modelo de Hognestad la deformación de rotura  $\varepsilon_u$  será igual a 0,0038.

El modelo quedaría representado en el siguiente gráfico:

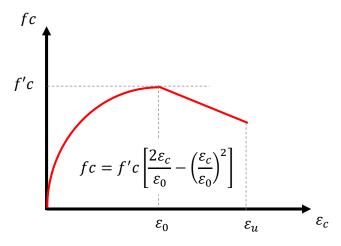



Figura 1. Curva esfuerzo-deformación del hormigón sin confinamiento de Hognestad (1951)

El modelo de Rüsch es un modelo menos conocido y aplicado que el de Hognestad o el de Whitney. Este modelo cuenta con dos ramas, de las cuales la primera coincide con el modelo de Hognestad, es decir que corresponde a una curva de segundo grado dado por la expresión:

$$fc = f'c\left[\frac{2\varepsilon_c}{\varepsilon_0} - \left(\frac{\varepsilon_c}{\varepsilon_0}\right)^2\right]; \quad 0 \le \varepsilon_c \le \varepsilon_0$$

Al final de la curva el hormigón alcanza su máxima resistencia al a compresión  $(0.85\ f'c)$ .

• De igual manera que el modelo de Hognestad, el valor de la deformación del hormigón al lograr su resistencia máxima se hallará así:

$$\varepsilon_0 = \frac{2f'c}{E_c}$$

La segunda rama consiste en una recta con una pendiente igual a 0, lo que indica que el hormigón mantiene su máxima resistencia hasta lograr su deformación máxima  $\varepsilon_u$  (Mieles y Hernández C. 2015). Por lo tanto, desde la deformación en la resistencia máxima del hormigón hasta su deformación última el valor del esfuerzo será:

$$fc = f'c$$
;  $\varepsilon_0 \le \varepsilon_c \le \varepsilon_u$ 

Para este modelo la deformación máxima o de rotura  $\varepsilon_u$  del hormigón será igual a 0,0035.

La gráfica del modelo es la siguiente:

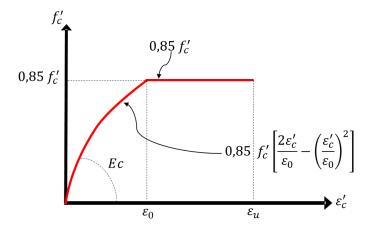



Figura 2. Curva esfuerzo-deformación del hormigón sin confinamiento de Rüsch

#### 1.4.1.3. Modelo de Todeschini

Este modelo, a diferencia de los 2 anteriores, propone que el diagrama de esfuerzo-deformación del hormigón sin confinamiento está representado por una sola parábola. Esta parábola está dada por la ecuación:

$$fc = \frac{2\frac{\varepsilon}{\varepsilon_0}}{1 + 2\left(\frac{\varepsilon}{\varepsilon_0}\right)^2} f'c$$

De acuerdo al modelo, el hormigón, por lo general, alcanza su máxima resistencia cuando su deformación  $\varepsilon_0$  es igual a 0,002, mientras que la rotura del hormigón se dará cuando éste alcance su deformación máxima (0,003) (Todeschini, Bianchini y Kesler 1964).

El modelo de Todeschini se representa con el siguiente gráfico:

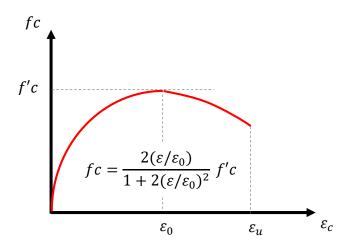



Figura 3. Curva esfuerzo-deformación del hormigón sin confinamiento de Todeschini (1964)

#### 1.4.1.4. Modelo de Whitney

Este modelo es el que utilizan las normas de diseño de hormigón armado como el ACI debido a que es un modelo conservador y a su facilidad para encontrar los esfuerzos de compresión del hormigón (Aguiar 2003). El modelo consiste en un bloque rectangular que representa un esfuerzo constante del hormigón en cierto rango de deformaciones hasta llegar a su rotura. El hormigón empieza a realizar esfuerzo desde que su deformación es:

$$\varepsilon_c = (1 - \beta_1)\varepsilon_u$$

El valor de  $\beta_1$  varía de acuerdo a la resistencia a compresión del hormigón, y está dado por el siguiente gráfico:

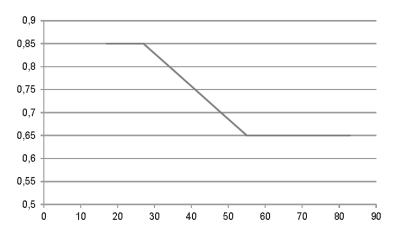



Figura 4. Valores de  $\beta_1$  en función de f'c (en MPa) <sup>1</sup>

8

<sup>&</sup>lt;sup>1</sup> Fuente: Norma Ecuatoriana de la Construcción (2015)

El modelo de Whitney se ve representado de la siguiente manera:

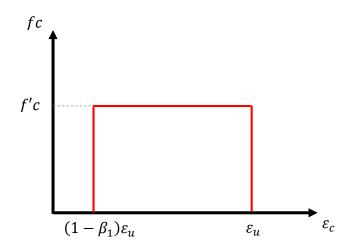



Figura 5. Curva esfuerzo-deformación del hormigón sin confinamiento de Whitney (1942)

#### 1.4.2. Modelos Constitutivos del Hormigón Confinado

La combinación del acero con el hormigón simple es lo que se denomina hormigón armado, nos referimos a concreto confinado de forma más específica por los refuerzos transversales ya que estos se encargan del confinamiento del hormigón.

Investigadores como Chan (1955), Blume et al. (1961), Roy y Sozen (Sozen 1964), Soliman y Yu (1967), Sargin et al. (1971), Kent y Park (1971) y Mander et al. (1988), realizaron estudios que demuestran que el correcto confinamiento en elementos de hormigón armado mejora su resistencia y sus aumentan sus deformacione, convirtiendo al Hormigón en un material más dúctil.

Se mide el confinamiento del hormigón en función a la cantidad de acero transversal esto incrementa de manera significativa la resistencia a la compresión, así el concreto se convierte en un material más dúctil.

Los modelos que describiremos a continuación son los más aceptados:

#### 1.4.2.1. Modelo de Kent y Park

Este modelo se lo aplica solo en secciones rectangulares o cuadradas en él se considera que el confinamiento no tiene efecto en la resistencia.

La curva que se propone en este modelo está formada por tres ramas A, B y C.

**Rama A:** El efecto del confinamiento aún no se presenta y su forma es igual a la del concreto simple y está definida en un intervalo  $(0 \le E_c \le E_\theta)$ :

$$f_{cA} = f'c\left[\frac{2Ec}{Eo} - \left(\frac{Ec}{Eo}\right)^2\right]; (0 \le E_c \le E_0)$$

**Rama B:** Se idealiza por una recta, inicia cuando el concreto alcanza su resistencia máxima y termina cuando esta se ha degradado en un 80% f'c=0.2f'c, en un intervalo  $(E_0 \le E_c \le E_{20c})$ :

$$f_{cB} = f'c[1 - Z(Ec - Eo)]; (E_0 \le E_c \le E_{20c})$$

**Rama C:** Se aprecia que el concreto podrá seguir tomando deformaciones más allá de  $E_{20c}$  pero no podrá tomar esfuerzos adicionales, se define un intervalo ( $E > E_{20c}$ ):

$$f_{cc} = 0.2f'c$$
;  $(E > E_{20c})$ 

$$Z = \frac{1}{2(E_{50u} + E_{50h} - E_0)}$$

$$E_{50u} = \frac{3 + E_0 f'c}{f'c - 1000}$$

$$E_{50h} = \frac{3}{4} \rho s \sqrt{\frac{bc}{s}}$$

Donde:

Ec: Deformación unitaria del concreto.

Eo: Deformación unitaria asociada a la resistencia máxima a compresión del concreto.

E20c: Deformación unitaria asociada al 0.20f'c.

**b**<sub>c</sub>: Ancho de la sección.

s: Separación de estribos.

**ρs**: Relación entre el volumen de acero de confinamiento y el volumen de hormigón confinado.

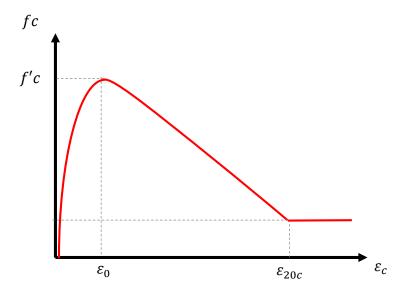



Figura 6. Modelo constitutivo del hormigón confinado de Kent y Park

#### 1.4.2.2. Modelo de Park Modificado

El modelo anterior no consideraba el incremento de la resistencia a la compresión debido al confinamiento, esta modificación la realizo Park en 1982, la cual consiste en incluir el aumento tanto de resistencia como de deformaciones producidas por el efecto del confinamiento del elemento. Lo que Park incluyó en la forma fue un factor k, el cual depende del confinamiento, se usan las mismas ecuaciones que se usaban en el modelo de (Park y Paulay 1975), solo que a las variables f'c y Eo las multiplican por el factor k.

Las siguientes ecuaciones definen a cada una de las ramas de la curva:

Primera Rama:

$$f_{cA} = kf'c\left[\frac{2Ec}{kEo} - \left(\frac{Ec}{kEo}\right)^2\right]; (0 \le E_c \le kE_0)$$

Segunda Rama:

$$f_{cB} = f'c[1 - Z(Ec - kEo)]; (E_0 \le E_c \le E_{20c})$$

$$k = 1 + \frac{\rho s \, fy}{f'c}$$

$$Z = \frac{1}{2(E_{50u} + E_{50h} - E_0)}$$

$$E_{50u} = \frac{3 + E_0 f'c}{f'c - 1000}$$

$$E_{50h} = \frac{3}{4}\rho s \sqrt{\frac{bc}{s}}$$

Donde:

K: factor de mayoración para el confinamiento

Ec: Deformación unitaria del hormigón.

Eo: Deformación unitaria en la resistencia máxima a compresión del hormigón.

E<sub>20c</sub>: Deformación unitaria asociada al 0.20f'c.

**b**<sub>c</sub>: Ancho de la sección.

s: Separación entre los estribos.

**ρs**: Relación entre el volumen de acero de confinamiento y el volumen de hormigón confinado.

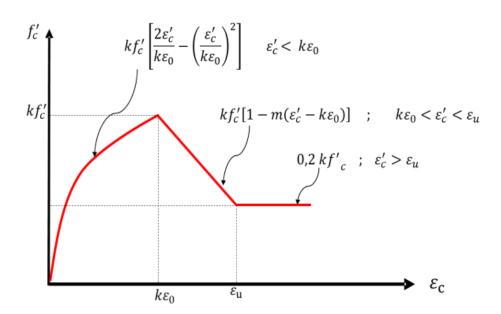



Figura 7. Modelo constitutivo del hormigón confinado de Park (1975)

#### 1.4.2.3. Modelo de Mander

Este modelo constitutivo propuesto por Mander (1988), consiste en una sola curva continua, y, al igual que el de Park, considera que el efecto del confinamiento no solo incrementa la capacidad de deformación del hormigón, sino también la resistencia a compresión de éste. Este modelo puede ser aplicado en secciones cuadradas, rectangulares y circulares (Popovics 1973).

La deformación última o de falla del hormigón, en este modelo, se presenta cuando se rompe el refuerzo transversal, perdiéndose el confinamiento del núcleo de hormigón, por lo tanto, las deformaciones unitarias del núcleo de hormigón aumentarán exageradamente.

En la figura 8 se comparan las curvas esfuerzo-deformación para un concreto no confinado y uno confinado, según el modelo que propone Mander (1988).

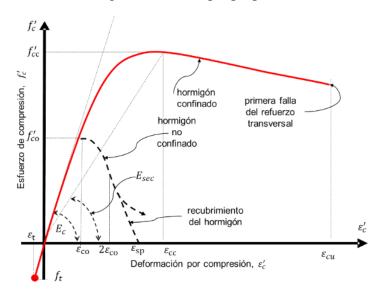



Figura 8. Modelo constitutivo del hormigón confinado de Mander (1988)

#### 1.4.3. Modelos Constitutivos del Acero de Refuerzo

El acero estructural, a diferencia del hormigón simple, es altamente resistente tanto a la tracción como a la compresión. La mayoría de autores de los modelos constitutivos del acero manifiestan que la resistencia a compresión del acero es casi idéntica a su resistencia a la tracción, hipótesis que ha sido comprobada por medio de pruebas.

Existen modelos basados en curvas conformadas por solo dos ramas o segmentos (elástica e inelástica), mientras que hay otros modelos que consideran una

tercera etapa del comportamiento del acero, la cual es la etapa del endurecimiento por deformación, donde se presenta un incremento de esfuerzo en el acero.

#### 1.4.3.1. Modelo Elasto-Plástico Perfecto

Conocido también como modelo bilineal, ya que cuenta con dos líneas o zonas de deformación: la primera es una línea recta con pendiente, que representa el comportamiento elástico, donde el acero empieza a deformarse gradualmente mientras realiza esfuerzo; la segunda es una línea recta con pendiente nula, que manifiesta que el acero deja de realizar esfuerzo y se deforma plásticamente hasta su rotura (Aguiar 2003), tal como se aprecia en la figura:

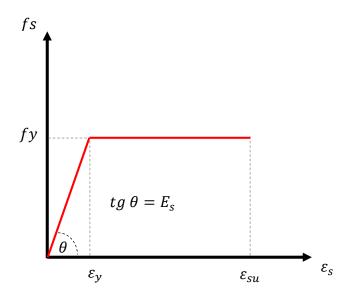



Figura 9. Modelo constitutivo bilineal del acero

Éste es el modelo que, debido a su simplicidad, emplea el ACI.

### 1.4.3.2. Modelo Trilineal

El modelo trilineal considera como parte de la curva de esfuerzo-deformación a la zona de endurecimiento del acero, la cual se encuentra inmediatamente después de la zona plástica y dentro de la zona posfluencia. En esta zona, a medida que el acero va deformándose va adquiriendo linealmente un porcentaje extra de resistencia debido al endurecimiento, hasta llegar a la rotura del mismo (Aguiar 2003).

Este modelo es más real que el elasto-plástico perfecto, ya que representa más aproximadamente el comportamiento del acero sometido a la tracción. La curva de esfuerzo-deformación de este modelo está representado así:

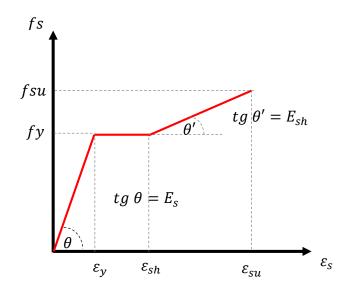



Figura 10. Modelo constitutivo trilineal del acero

#### 1.4.3.3. Modelo de Curva Completa

Éste modelo del acero, el cual proponen Park y Paulay (1975), es exactamente igual al modelo trilineal en sus dos primeras ramas (zonas elástica y plástica), pero su tercera rama equivale a una parábola, lo cual manifiesta que la resistencia adquirida por endurecimiento del acero no es lineal, como se muestra en la siguiente figura:

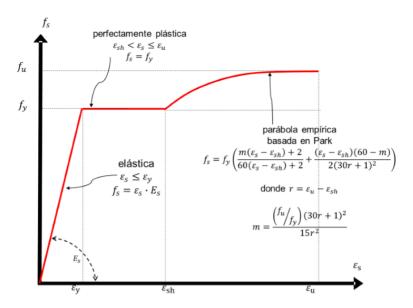



Figura 11. Modelo constitutivo trilineal (curva completa) del acero

# 1.4.4. Transformación de Leyes de Comportamiento del Hormigón no Lineales en un Diagrama Rectangular Equivalente

La mayoría de las leyes constitutivas del hormigón existentes son de carácter no lineal, lo cual dificulta la determinación del volumen del diagrama de esfuerzos de compresión (para hallar la fuerza resultante), así como del centroide de éste (para hallar la posición de la fuerza). En consecuencia, es necesario realizar un artificio que permita transformar este diagrama de esfuerzos en una rectangular equivalente que facilite la determinación de la magnitud y ubicación de la fuerza resultante de dicho diagrama (Hernández Santana y Hernández Caneiro 2013).

El diagrama equivalente que se obtiene por medio de este artificio debe reunir las siguientes condiciones:

- 1. El área del rectangular equivalente debe ser igual al área que se forma bajo el diagrama (curva) esfuerzo-deformación real.
- 2. El centroide del rectángulo equivalente debe estar ubicado en la misma posición que el centroide del área del diagrama real.

Para realizar la transformación del diagrama no lineal al rectangular equivalente se debe seguir los siguientes pasos:

- 1. Se construye el rectángulo equivalente con una altura  $\alpha_I \cdot f_c^{'}$  y un ancho  $\beta_I \cdot \varepsilon_{cI}^{'}$ .
- 2. Se igualan el área debajo de la curva real y el área del rectángulo, obteniendo la primera ecuación.
- 3. Se igualan las distancias de ambas áreas a sus centroides (sobre el eje de las deformaciones) para obtener la segunda ecuación.
- 4. Se reemplazan los valores del esfuerzo del hormigón (fc) propuestos por el modelo constitutivo.
- 5. Utilizando los límites de deformaciones correspondientes, se resuelve un sistema de dos ecuaciones para hallar los valores de  $\alpha_1$  y  $\beta_1$ .

Este proceso se debe realizar para cada rama del modelo constitutivo, por lo tanto se obtendrá una ecuación de  $\alpha_1$  y una ecuación de  $\beta_1$  para cada rama, los cuales servirán para hallar los valores de estas constantes solo dentro del rango de deformaciones de cada rama.

# 1.4.4.1. Transformación del Modelo de Rüsch en uno Equivalente mediante Integración

A partir de las leyes del modelo de Rüsch se obtienen las ecuaciones para hallar los esfuerzos del hormigón en cada rama, en función a su deformación (Hernández Santana y Hernández Caneiro 2013):

$$\sigma'_{c} : \begin{cases} 0.85 \, f' c [2\Omega - \Omega^{2}] & \varepsilon'_{c} < 0.002 \\ 0.85 \, f' c & 0.002 \le \varepsilon'_{c} \le 0.0035 \end{cases}$$

donde:

$$\Omega = \epsilon'_{c}/\epsilon_{o}$$

#### Primera Rama (Parábola)

A continuación se hace la transformación de la primera rama al diagrama rectangular equivalente  $\left(\varepsilon_{cI}^{'} < 0.002\right)$ :

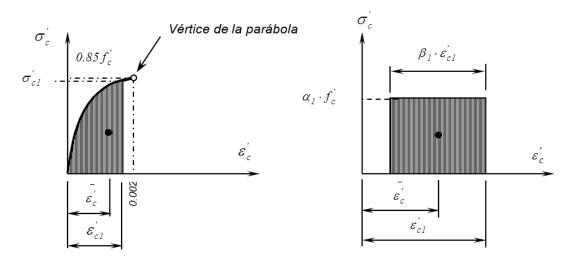



Figura 12. Transformación de la primera rama del modelo de Rüsch

El área de la figura equivalente debe ser igual a la del modelo original, por lo tanto se igualan las áreas, sabiendo que el área del modelo original es la integral de la curva:

$$\int_{0}^{\epsilon'_{c1}} \sigma'_{c} \cdot d\epsilon'_{c} = \left(\alpha_{1} \cdot f'_{cd}\right) \cdot \left(\beta_{1} \cdot \epsilon'_{c1}\right)$$

Los centroides de ambas áreas también deben coincidir, por lo tanto se los iguala:

$$\frac{\varepsilon_{cl}^{'}}{\varepsilon_{c}^{'}} = \frac{\int_{c_{c}}^{c_{c}} \sigma_{c}^{'} \cdot \varepsilon_{c}^{'} \cdot d\varepsilon_{c}^{'}}{\int_{c_{c}}^{c_{c}} \sigma_{c}^{'} \cdot d\varepsilon_{c}^{'}} = \left(1 - \frac{\beta_{1}}{2}\right) \cdot \varepsilon_{cl}^{'}$$

De esta manera se obtiene un sistema de dos ecuaciones con dos incógnitas ( $\alpha_1$  y  $\beta_1$ ). Luego, al reemplazar la ecuación del esfuerzo para la primera rama y resolviendo el sistema de ecuaciones, se obtiene las ecuaciones de  $\alpha_1$  y de  $\beta_1$ :

$$\alpha_1 = \frac{6\left(1 - \frac{\Omega}{3}\right)^2}{\left(\frac{4}{\Omega} - 1\right)}$$

$$\beta_1 = \frac{4 - \Omega}{6 - 2\Omega}$$

#### Segunda Rama (Rectángulo)

Para la segunda rama  $(0.002 \le \varepsilon_{c1}^{'} \le 0.0035)$  se tienen dos rangos: de 0 a 0.002 y de 0.002 a  $\varepsilon_{c1}^{'}$ , siendo éste menor o igual a 0.0035. La ecuación del área del diagrama original tendrá dos integrales, cada una con sus respectivos límites. Igualando las áreas tenemos:

$$\int_{0}^{0.002} \sigma_{c1}^{'} \cdot d\varepsilon_{c}^{'} + \int_{0}^{\varepsilon_{c1}} \sigma_{c2}^{'} \cdot d\varepsilon_{c}^{'} = (\alpha_{1} \cdot f_{cd}^{'}) \cdot (\beta_{1} \cdot \varepsilon_{c1}^{'})$$

De igual manera se igualan los centroides de ambas áreas:

$$\frac{\int_{c_1}^{c_1} \sigma_{c_1} \cdot \varepsilon_c \cdot d\varepsilon_c + \int_{c_2}^{c_1} \sigma_{c_2} \cdot \varepsilon_c \cdot d\varepsilon_c}{\int_{c_2}^{c_1} \sigma_{c_2} \cdot \varepsilon_c \cdot d\varepsilon_c} = \left(1 - \frac{\beta_1}{2}\right) \cdot \varepsilon_{c_1}$$

$$\frac{\int_{c_1}^{c_1} \sigma_{c_1} \cdot d\varepsilon_c + \int_{c_2}^{c_1} \sigma_{c_2} \cdot d\varepsilon_c}{\int_{c_2}^{c_1} \sigma_{c_2} \cdot d\varepsilon_c} = \left(1 - \frac{\beta_1}{2}\right) \cdot \varepsilon_{c_1}$$

Reemplazando las ecuaciones del esfuerzo del hormigón y resolviendo el sistema de ecuaciones, se obtienen las ecuaciones de  $\alpha_1$  y de  $\beta_1$  para la segunda rama:

$$\alpha_1 = \frac{3\Omega - 1}{3\Omega\beta_1}$$

$$\beta_1 = 2 \left[ 1 - \frac{6\Omega^2 - 1}{4\Omega(3\Omega - 1)} \right]$$

# 1.4.4.2. Transformación del Modelo de Hognestad en uno Equivalente mediante Integración.

Las ecuaciones para las dos ramas del modelo de Hognestad, previamente mencionadas, son:

$$\sigma'_c : \begin{cases} f'c[2\Omega - \Omega^2] & \varepsilon'_c < 0.002 \\ f'c(1.15 - 0.15\Omega) & 0.002 \le \varepsilon'_c \le 0.004 \end{cases}$$

donde:

$$\Omega = \epsilon'_c/\epsilon_o$$

#### Primera Rama (Parábola)

Como se mencionó, el área de la figura equivalente debe ser igual a la del modelo original, por lo tanto se igualan las áreas, sabiendo que el área del modelo original es la integral de la curva:

$$\int_{0}^{\epsilon'_{c1}} \sigma'_{c} \cdot d\epsilon'_{c} = \left(\alpha_{1} \cdot f'_{cd}\right) \cdot \left(\beta_{1} \cdot \epsilon'_{c1}\right)$$

Los centroides de ambas áreas también deben coincidir, por lo tanto se los iguala:

$$\varepsilon_{c}^{'} = \frac{\int_{c_{l}}^{c_{l}} \sigma_{c}^{'} \cdot \varepsilon_{c}^{'} \cdot d\varepsilon_{c}^{'}}{\int_{c_{l}}^{c_{l}} \sigma_{c}^{'} \cdot d\varepsilon_{c}^{'}} = \left(1 - \frac{\beta_{l}}{2}\right) \cdot \varepsilon_{cl}^{'}$$

De esta manera se obtiene un sistema de dos ecuaciones con dos incógnitas ( $\alpha_1$  y  $\beta_1$ ). Luego, al reemplazar la ecuación del esfuerzo para la primera rama y resolviendo el sistema de ecuaciones, se obtiene las ecuaciones de  $\alpha_1$  y de  $\beta_1$ :

$$\alpha_1 = \frac{6\left(1 - \frac{\Omega}{3}\right)^2}{\left(\frac{4}{\Omega} - 1\right)}$$

$$\beta_1 = \frac{4 - \Omega}{6 - 2\Omega}$$

#### Segunda Rama (Recta con pendiente)

Para la segunda rama  $(0.002 \le \varepsilon_{c1}' \le 0.004)$  se tienen dos rangos: de 0 a 0.002 y de 0.002 a  $\varepsilon_{c1}'$ , siendo éste menor o igual a 0.004. La ecuación del área del diagrama original tendrá dos integrales, cada una con sus respectivos límites. Igualando las áreas tenemos:

$$\int_{0}^{0.002} \sigma_{c1}^{'} \cdot d\varepsilon_{c}^{'} + \int_{0}^{\varepsilon_{c1}} \sigma_{c2}^{'} \cdot d\varepsilon_{c}^{'} = (\alpha_{1} \cdot f_{cd}^{'}) \cdot (\beta_{1} \cdot \varepsilon_{c1}^{'})$$

De igual manera se igualan los centroides de ambas áreas:

$$\vec{\varepsilon}_{c}^{'} = \frac{\int_{0.002}^{0.002} \sigma_{c1}^{'} \cdot \varepsilon_{c}^{'} \cdot d\varepsilon_{c}^{'} + \int_{0.002}^{\varepsilon_{c1}^{'}} \sigma_{c2}^{'} \cdot \varepsilon_{c}^{'} \cdot d\varepsilon_{c}^{'}}{\int_{0.002}^{0.002} \sigma_{c1}^{'} \cdot d\varepsilon_{c}^{'} + \int_{0.002}^{\varepsilon_{c1}^{'}} \sigma_{c2}^{'} \cdot d\varepsilon_{c}^{'}} = \left(1 - \frac{\beta_{1}}{2}\right) \cdot \varepsilon_{c1}^{'}$$

Reemplazando las ecuaciones del esfuerzo del hormigón y resolviendo el sistema de ecuaciones, se obtienen las ecuaciones de  $\alpha_1$  y de  $\beta_1$  para la segunda rama:

$$\alpha_1 = \frac{1.15 - 0.075\Omega - 0.408/\Omega}{\beta_1}$$

$$\beta_1 = 2 \left[ 1 - \frac{0.575\Omega^2 - 0.05\Omega^3 - 0.108}{\Omega(1.15\Omega - 0.075\Omega^2 - 0.408)} \right]$$

# 1.4.4.3. Transformación del Modelo de Park en uno Equivalente mediante Integración

Para determinados análisis en las cuales no resulta recomendable el diagrama de deformaciones de Whitney por ser conservador, se puede integrar las ecuaciones del modelo constitutivo del hormigón que se elija.

El diagrama de compresiones parabólico de Park puede ser transformado en uno regular con la condición que el área del diagrama y su centro de aplicación de fuerzas coincidan con el regular, esquema que es mostrado en la figura 4. Esto se lo logra con una integral definida de las funciones generadoras de las ramas teniendo en cuenta los límites apropiados mostrados en la figura 3.

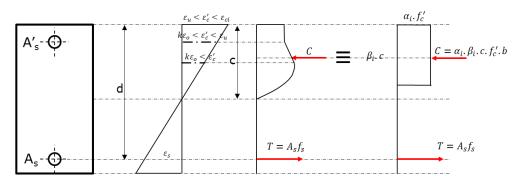



Figura 13. Transformación del diagrama de irregular en uno regular

Los fundamentos del proceso están expuestos en Hernández y Caneiro (2013). Estableciendo una equivalencia del área irregular con el diagrama rectangular se plantea la igualdad de fuerzas mostrada en la ecuación:

$$\int_0^{k\varepsilon_0} \sigma_c' \, d\varepsilon_c' = \boldsymbol{\alpha_1} \, \boldsymbol{\beta_1} f_c' \, \varepsilon_c'$$

Y la posición del centroide, ecuación:

$$\frac{\int \sigma_c' \cdot \varepsilon_c' \cdot d\varepsilon_c'}{\int \sigma_c' \cdot d\varepsilon_c'} = \varepsilon_c' \left( 1 - \frac{\beta_1}{2} \right)$$

El planteamiento de la integral para el cálculo de  $\alpha_1$  y  $\beta_1$  mostrados en las 2 ecuaciones anteriores se resuelve y se obtiene los coeficientes  $\alpha_1$  y  $\beta_1$ , integrados en función del eje de las abscisas que representa a  $\varepsilon_c$ . Se muestran los resultados directos de esta integración para las tres ramas de la ecuación de Park et al. (1982):

$$\int \sigma'_c d\varepsilon'_c = \int_0^{k\varepsilon_0} k f'_c \left[ \frac{2\varepsilon'_c}{k\varepsilon_0} - \left( \frac{\varepsilon'_c}{k\varepsilon_0} \right)^2 \right] d\varepsilon'_c + \int_{k\varepsilon_0}^{\varepsilon_u} k f'_c [1 - m(\varepsilon'_c - k\varepsilon_0)] d\varepsilon'_c + \int_{\varepsilon_u}^{\varepsilon_{ci}} 0.2 \ k f'_c d\varepsilon'_c$$

$$\int \sigma_c' \varepsilon_c' d\varepsilon_c' = \int_0^{k\varepsilon_0} k f_c' \left[ \frac{2\varepsilon_c'}{k\varepsilon_0} - \frac{(\varepsilon_c')^2}{(k\varepsilon_0)^2} \right] \varepsilon_c' d\varepsilon_c' + \int_{k\varepsilon_0}^{\varepsilon_u} k f_c' [1 - m(\varepsilon_c' - k\varepsilon_0)] \varepsilon_c' . d\varepsilon_c'$$

$$+ \int_{\varepsilon_u}^{\varepsilon_{ci}} (0.2 \ k f_c') \varepsilon_c' d\varepsilon_c'$$

Integrando las ecuaciones anteriores y reemplazando su resultado se obtienen  $\alpha_1$  y  $\beta_1$  para las tres ramas expresadas en las ecuaciones:

Primera rama (  $\varepsilon'_{ci} < k\varepsilon_0$ ):

$$\alpha_1 = \frac{\varepsilon_c'}{\beta_1 \, \varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right]$$

$$\beta_1 = 2 \left[ 1 - \frac{\frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0}}{1 - \frac{\varepsilon_c'}{3k\varepsilon_0}} \right]$$

Segunda rama  $(k\varepsilon_0 \le \varepsilon'_c < \varepsilon_u)$ :

$$\alpha_1 = \frac{1}{\beta_1 \; \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 \; + k \varepsilon_c' \left( 1 - m \; \frac{\varepsilon_c'}{2} + m \, k \; \varepsilon_0 \; \right) - k^2 \varepsilon_0 \left( 1 + m \; \frac{k \varepsilon_0}{2} \right) \right\}$$

$$\beta_1 = \frac{2}{\varepsilon_c'} \left\{ \varepsilon_c' - \frac{\frac{5}{12} k^2 (\varepsilon_0)^2 + (\varepsilon_c')^2 \left[ \frac{1}{2} - \frac{m \varepsilon_c'}{3} + \frac{m k \varepsilon_0}{2} \right] - k^2 (\varepsilon_0)^2 \left[ \frac{1}{2} + \frac{1}{6} m k \varepsilon_0 \right]}{\frac{2}{3} k \varepsilon_0 + \varepsilon_c' \left( 1 - m \frac{\varepsilon_c'}{2} + m k \varepsilon_0 \right) - k \varepsilon_0 \left( 1 + m \frac{k \varepsilon_0}{2} \right)} \right\}$$

Tercera rama ( $\varepsilon_u < \varepsilon_c' < \varepsilon_{ci}$ ):

$$\alpha_1 = \frac{1}{\beta_1 \, \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 \, + k \varepsilon_u \left( 1 - m \, \frac{\varepsilon_u}{2} + m \, k \, \varepsilon_0 \, \right) - k^2 \varepsilon_0 \left( 1 + m \, \frac{k \varepsilon_0}{2} \right) + +0.2. \, \varepsilon_{ci}' - 0.1. \, \varepsilon_u \right\}$$

$$\beta_1 = \frac{2}{\varepsilon'_c} \left\{ \varepsilon'_c - \frac{\frac{5}{12} k^2 (\varepsilon_0)^2 + (\varepsilon_u)^2 \left[ \frac{1}{2} - \frac{m \varepsilon_u}{3} + \frac{m k \varepsilon_0}{2} \right] - k^2 (\varepsilon_0)^2 \left[ \frac{1}{2} + \frac{1}{6} m k \varepsilon_0 \right] + 0.1 (\varepsilon'_{ci})^2 - 0.1 (\varepsilon_u)^2}{\frac{2}{3} k \varepsilon_0 + \varepsilon_u \left( 1 - m \frac{\varepsilon_u}{2} + m k \varepsilon_0 \right) - k \varepsilon_0 \left( 1 + m \frac{k \varepsilon_0}{2} \right) + 0.2 \cdot \varepsilon'_{ci} - 0.2 \cdot \varepsilon_u} \right\}$$

#### 1.4.5. Métodos para el cálculo de Diagramas de Momento-Curvatura

#### 1.4.5.1. Definiciones básicas

Tabla 1. **Definiciones básicas para el cálculo de diagramas de momento- curvatura** 

| 3 | Deformación<br>Específica | Deformación por cada unidad de longitud                                                                                                                                           |
|---|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Е | Módulo de Elasticidad     | Medida de rigidez de un material, en el diagrama esfuerzo vs. deformación específica es la tangente del ángulo que forma la recta tangente a la curva con el eje de las abscisas. |
| I | Momento de inercia        | Oposición que presenta un objeto a la rotación.                                                                                                                                   |
| С | Plano Neutro              | Plano donde los esfuerzos axiales son nulos. Su posición se mide desde la fibra extrema a compresión.                                                                             |
| М | Momento                   | Par de fuerzas iguales y de sentido contrario que resiste la sección transversal.                                                                                                 |
| Ø | Curvatura                 | Ángulo de rotación de la sección.                                                                                                                                                 |

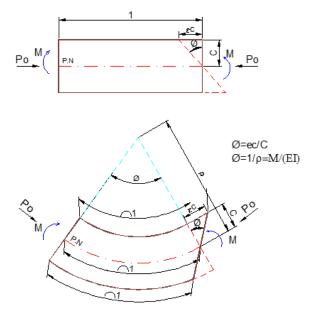



Figura 14. Viga en flexión

#### 1.4.5.2. Cálculos preliminares

Antes de proceder al cálculo del diagrama de momento-curvatura de una sección, se requiere las propiedades geométricas de dicha sección: Área, centro geométrico y plástico e inercia no agrietada.

#### 1.4.5.3. Procedimientos generales

- Determinar la deformación específica para la fibra más extrema en compresión
   Ec.
- 2. Determinar la posición del eje neutro *C*.
- 3. Calcular el momento resistente M y curvatura  $\phi$ .
- 4. Repetir el procedimiento con un rango de valores de deformación específica y obtener una lista con valores de Momento y Curvatura.
- 5. Calculo de puntos notables  $\phi a$ , Ma;  $\phi y$ , My;  $\phi u$ , Mu.
- 6. Construir el diagrama  $M-\phi$ .

#### 1.4.5.4. Método de las fibras

Este método subdivide la sección en dovelas, se debe calcular las propiedades para cada dovela y realizar la sumatoria en toda la altura de la sección. (Aguiar 2014). Para obtener el diagrama momento-curvatura se debe<sup>2</sup>:

- 1. Asumir εc=0.0001.
- 2. Subdividir la sección de hormigón en dovelas de espesor definido.
- 3. Interpolar con los vectores hy y by, obtener el ancho para cada fibra.
- 4. Deducir el centroide de cada fibra.
- 5. Asumir un valor inicial de la posición del eje neutro C.
- 6. Para cada dovela de hormigón:
  - a) Calcular la deformación considerando la Hipótesis de Navier-Bernoulli. (las deformaciones en compresión son positivas)
  - b) Por interpolación con los vectores *ecv* y *fcv*, calcular el esfuerzo de cada fibra.
  - c) Calcular las fuerzas en cada dovela. (el signo positivo es para compresión)

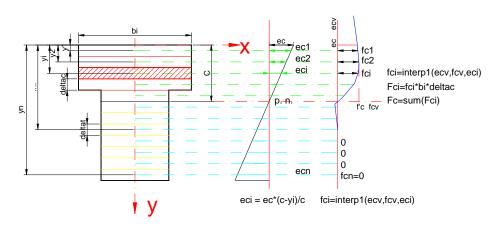



Figura 15. Cálculo de esfuerzos para cada dovela (método de las fibras)

- 7. Para cada fila de acero de refuerzo:
  - a) Calcular la deformación considerando la Hipótesis de Navier-Bernoulli (las deformaciones en compresión son positivas).

25

<sup>&</sup>lt;sup>2</sup> Todos los gráficos del punto 1.4.5.4. han sido tomados de: Aguiar, Roberto. «Método de las fibras (apuntes de clases de dinamica de estructuras).» 2014.

- b) Por interpolación con los vectores *esv* y *fsv*, calcular el esfuerzo de cada fibra.
- c) Calcular las fuerzas en cada dovela. (el signo positivo es para compresión)

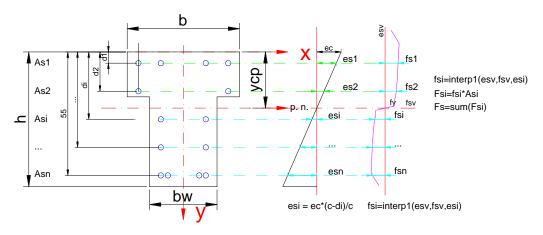



Figura 16. Cálculo de esfuerzos para cada fila de acero (método de las fibras)

8. Realizar una sumatoria algebraica de las fuerzas.

$$F=Fc+Fs+Po;$$

Si la sumatoria |F| es diferente de 0 (o mayor que una tolerancia) se debe asumir una nueva posición de eje neutro (C) y repetir desde el paso *vi*, hasta encontrar la posición aproximada del eje neutro. Para asumir una nueva posición se analiza el signo de la sumatoria de fuerzas, si es positiva se debe disminuir y si negativa se debe incrementar el valor de C.

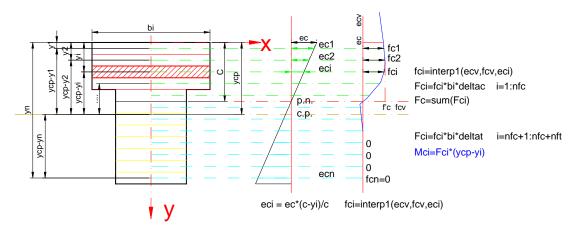



Figura 17. Ubicación del nuevo eje neutro (método de las fibras)

9. Calcular el momento resistente de cada fibra y fila de acero con respecto al centroide plástico de la sección.

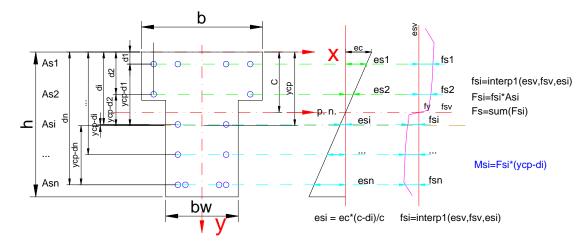



Figura 18. Cálculo de momentos resistentes (método de las fibras)

- 10. Realizar una sumatoria de los momentos resistentes.
- 11. Calcular la curvatura.

$$\phi = \frac{\varepsilon_c}{c}$$

- 12. Repetir el procedimiento incrementando el valor de sc hasta que todas las filas de acero superen la deformación ultima.
- 13. Con esa lista realizar un diagrama.

Es indispensable determinar el momento curvatura  $M - \emptyset$ , ya que nos permite conocer la capacidad a flexión de ductilidad por curvatura de las secciones correspondientes, al tener ya el diseño estructural, para realizar una comparación con las demandas correspondientes (Aguiar 2010).

Es ideal que el elemento tenga una gran capacidad de ductilidad por curvatura, esto mejora la disipación de energía que pueda tener la estructura, optimizando el funcionamiento de sus elementos y evitando que se presente una falla frágil.

El comportamiento no lineal del material se define por la relación momento curvatura al resultar de éste el cálculo de las rigideces de las ramas del diagrama histerético.

Para obtener resultados más reales al encontrar la ductilidad por curvatura es mejor usar modelos de hormigón confinado y modelo de acero que considere endurecimiento posfluencia.

#### 1.4.5.5. Método de los diagramas rectangulares equivalentes

Este método corresponde a un método iterativo, en el cual se asume una deformación  $\varepsilon'_c$  en la fibra más comprimida del hormigón y que se encuentra entre valores muy pequeñas de deformación hasta valores máximos. A esa deformación le corresponde un valor de  $\alpha_I$  y  $\beta_I$ , que se obtienen con las ecuaciones previamente descritas para varios modelos de hormigón confinado y sin confinamiento.

Con la deformación obtenemos la posición del eje neutro *C*, con la cual podemos determinar la deformación que tiene el acero en la fibra a tracción (Hernández Santana y Hernández Caneiro 2013).

$$C = \frac{A_s. f_y}{\alpha_1 \beta_1 f_c' b - \frac{1}{2} f_r \left(\frac{0,0001}{\varepsilon_c'}\right)}$$

Luego, se determina los valores de la deformación del acero sabiendo que su deformación debe ser mayor a:

$$\varepsilon_y = \frac{f_y}{E}$$

siendo,

$$\varepsilon_s = \frac{d-c}{c} \varepsilon_c'$$

Se obtiene el valor de momento flector con la ecuación de equilibrio estático, tomando en cuenta los momentos al acero en tracción.

$$M = \alpha_1 \cdot \beta_1 \cdot f_c' \cdot b \cdot c \left( d - \frac{1}{2} \beta_1 c \right) - \frac{1}{2} f_r b \left( \frac{0,0001}{\varepsilon_c'} \right) c \left[ d - c - \frac{2}{2} \left( \frac{0,0001}{\varepsilon_c'} \right) c \right]$$

Con la deformación del concreto asumida al inicio y la posición del eje neutro calculamos el giro.

$$\phi = \frac{\varepsilon_c'}{c}$$

Se debe repetir todo el proceso con diferentes valores de deformación del hormigón, hasta su deformación máxima según cada modelo constitutivo, hasta obtener una serie de datos de momentos y curvatura para cada deformación.

Por último se grafica los puntos de momento y curvatura para la elaboración del diagrama  $M-\phi$ .

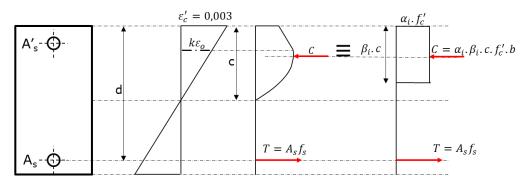



Figura 19. Transformación del modelo constitutivo del hormigón a uno rectangular equivalente

#### 1.4.6. Ductilidad local por curvatura

Parte indispensable del análisis de secciones aisladas de hormigón armado es conocer la ductilidad que éstas poseen debido a la curvatura generada durante la flexión. La ductilidad por curvatura  $\mu_{\phi}$  es la capacidad que tiene una estructura o uno de sus elementos para disipar energía ante la acción de un sismo, entre mayor sea la ductilidad mayo energía disipará (Aguiar 2003). La ductilidad por curvatura de una sección se calcula con la siguiente ecuación:

$$\mu_{\phi} = \frac{\phi_u}{\phi_y}$$

donde,

 $\phi_u = ext{Curvatura última de la sección}$ 

 $\phi_y$  = Curvatura cuando comienza la fluencia del acero a tracción

### **CAPÍTULO II**

#### 2.1. VISUALIZACIÓN DEL ALCANCE DEL ESTUDIO

- **2.1.1. Aporte Social:** Se confirma que es posible construir vigas y en general estructuras de hormigón armado, el cual es el material preferido para los profesionales y las personas en general, que garanticen la seguridad de las personas, dado que este estudio demuestra que una viga de hormigón armado tiene una ductilidad adicional producida por el efecto de confinamiento del refuerzo transversal, la misma que no es considerada en los modelos elásticos de diseño.
- 2.1.2. Aporte Económico: En este estudio se hace visible que la ingeniería es el arte de combinar la economía con la seguridad. En el caso de las vigas de hormigón armado se busca ante todo la seguridad y aunque se puede tener secciones más pequeñas que generarían economía, en un evento sísmico tendrían poca ductilidad, se provocaría daño y millones de dólares en pérdidas; un hormigón confinado, lo cual no es tomado en cuenta en los cálculos clásicos de vigas de hormigón armado, genera una reserva de deformaciones ante solicitaciones accidentales, lo que a largo plazo se traduce en seguridad y ahorro.
- **2.1.3. Aporte Científico:** Analizar una sección de hormigón armado con modelos de hormigón confinado y compararlo con modelos utilizados por el ACI que son modelos que no consideran el efecto del confinamiento y el endurecimiento posfluencia del acero demuestra que las estructuras que se están construyendo apuntan hacia la seguridad, lo que en eventos extraordinarios como sismos, por ejemplo, resultan en economía.

### 2.2. HIPÓTESIS

El utilizar diagramas de momento-curvatura basados en modelos constitutivos de hormigón confinado permitirá que el diseño y la construcción de estructuras de hormigón armado sean más precisos.

## 2.3. DEFINICIÓN DE VARIABLES

#### 2.3.1. VARIABLE INDEPENDIENTE: COMPORTAMIENTO DE VIGAS

| MANIFESTACIÓN             | CATEGORÍA      | INDICADOR                | ÍTEMS                        | TÉCNICA                 |
|---------------------------|----------------|--------------------------|------------------------------|-------------------------|
| COMPORTAMIENTO DE         | COMPORTAMIENTO | Modelos de Hormigón      | ¿Conoce usted cómo es el     | Entrevista a docentes   |
| VIGAS                     | DE VIGAS       | confinado y no confinado | comportamiento de vigas de   | universitarios expertos |
|                           |                |                          | hormigón armado con          | en el campo de          |
| Se entiende por           |                |                          | modelos de hormigón          | estructuras de hormigón |
| 'comportamiento de vigas' |                |                          | confinado y no confinado?    | armado.                 |
| a la forma en que estos   |                |                          |                              |                         |
| elementos estructurales   |                |                          |                              |                         |
| reaccionan ante los       | RELACIÓN       | Diagrama de Momento-     | ¿Tiene usted conocimiento de |                         |
| esfuerzos provocados por  | MOMENTO-       | Curvatura                | la importancia de los        |                         |
| cargas externas y por su  | CURVATURA      |                          | diagramas de momento-        |                         |
| peso propio.              |                |                          | curvatura en el diseño de    |                         |
|                           |                |                          | vigas de hormigón armado?    |                         |

### 2.3.2. VARIABLE DEPENDIENTE: MODELOS DE HORMIGÓN

| MANIFESTACIÓN              | CATEGORÍA  | INDICADOR              | ÍTEMS                           | TÉCNICA                                               |
|----------------------------|------------|------------------------|---------------------------------|-------------------------------------------------------|
| MODELOS DE                 | MODELOS DE | Importancia de los     | ¿Conoce usted para qué          | Entrevista a docentes                                 |
| HORMIGÓN                   | HORMIGÓN   | Modelos de Hormigón    | sirven los modelos de hormigón? | universitarios expertos en el campo de estructuras de |
| Son representaciones       |            |                        |                                 | hormigón armado.                                      |
| gráficas, por medio de     |            |                        |                                 |                                                       |
| ecuaciones, del            |            | Variedad de Modelos de | ¿Conoce usted los               |                                                       |
| comportamiento del         |            | Hormigón               | diferentes modelos de           |                                                       |
| hormigón, relacionando el  |            |                        | hormigón confinado y no         |                                                       |
| esfuerzo del material y su |            |                        | confinado?                      |                                                       |
| deformación.               |            |                        |                                 |                                                       |

#### 2.4. OBJETIVOS

#### 2.4.1. Objetivo General

Definir el comportamiento de vigas de hormigón armado por medio de la relación momento-curvatura.

#### 2.4.2. Objetivos Específicos

- Desarrollar modelos de hormigón sin confinar y confinado para vigas de hormigón armado.
- Elaborar programas computacionales para diagramas de momentocurvatura en vigas de hormigón armado.
- Determinar un modelo apropiado para la ley de comportamiento del hormigón.
- Proponer un método de análisis y diseño que se adapte mejor a las condiciones reales del hormigón y el acero.

#### 2.5. DESARROLLO DEL DISEÑO DE LA INVESTIGACIÓN

#### 2.5.1. Esquema General

El desarrollo de la presente investigación está dividido en 4 partes:

- 1. Determinación de los coeficientes  $\alpha_I$  y  $\beta_I$  para cada rama de los modelos constitutivos del hormigón de Park, Hognestad, Rüsch y Whitney (ACI).
- 2. Cálculo de los valores de momento y de curvatura para los modelos del punto (1) con sus respectivos rangos de deformaciones del hormigón.
- Cálculo de los valores de momento y de curvatura para el modelo de Mander (confinado) con su respectivo rango de deformaciones del hormigón.
- 4. Representación gráfica de las curvas de momento-curvatura  $(M-\varphi)$  de todos los modelos mencionados.

#### 2.5.2. Software Utilizado

Se empleó el software Microsoft Excel para el cálculo de los coeficientes  $\alpha_I$  y  $\beta_I$  para los modelos de Park, Hognestad, Rüsch y Whitney (ACI), para el cálculo correspondiente de los diagramas M- $\varphi$  de todos los modelos constitutivos y para la elaboración de los gráficos de estos diagramas.

Además se utilizó el software SAP 2000 para la obtención de los valores de momento y de curvatura para el modelo de Mander, debido a su complejidad de cálculo. Estos valores, posteriormente, fueron exportados al Excel para la representación gráfica del diagrama.

#### 2.5.3. Materiales para el cálculo

#### **2.5.3.1.** Hormigón

Se trabajó con un hormigón de resistencia a la compresión de 21 MPa, con una peso específico de 24 kN/m<sup>3</sup>. Se utilizó la elasticidad de la roca de las canteras de Picoazá, citada en la NEC-15, de 52.5 GPa, y se calculó la elasticidad del hormigón (19733 MPa) con la fórmula de la NEC-15:

$$E_c = 1.15 \sqrt[3]{E_a} \sqrt{f'c}$$

donde:

 $E_c$ = Elasticidad del hormigón (en MPa)

 $E_a$ = Elasticidad de la roca (en GPa)

f'c= Resistencia del hormigón a la compresión (en GPa)

Para el cálculo de los diagramas en Excel se consideró la resistencia del hormigón a la tracción ( $f_r$ ), dada por la fórmula del ACI 318:

$$f_r = 0.7\sqrt{f'c}$$

#### 2.5.3.2. Acero

El acero utilizado para el cálculo es de resistencia a la tracción de 420 Mpa, con una elasticidad de 200000 Mpa.

Para el cálculo de los diagramas M- $\varphi$  en Excel se utilizó un modelo bilineal, mientras que en el SAP 200 se utilizó un modelo trilineal (curva completa), el cual viene por default.

#### 2.5.4. Secciones para el cálculo

Para el cálculo de los diagramas se propuso 3 diferentes secciones de viga de hormigón armado que cumplen con la relación  $h \approx 1.5b$ .

#### • Sección 1

#### Geometría

b = 25 cm

h = 40 cm

d' = 6 cm

d = 34 cm

#### **Acero Longitudinal**

 $\rho = 0.007$ 

$$As = 5.95 cm^2 \rightarrow 4\phi 14 mm$$

#### **Acero Transversal**

 $d_{estribo} = 10 \ mm$ 

sep.estribos = 10 cm

#### • Sección 2

#### Geometría

 $b = 30 \ cm$ 

h = 45 cm

d' = 6 cm

d = 39 cm

#### **Acero Longitudinal**

 $\rho = 0.007$ 

 $As = 8.19 cm^2 \rightarrow 4\phi 16 mm$ 

#### **Acero Transversal**

 $d_{estribo} = 10 \ mm$ 

sep.estribos = 10 cm

#### • Sección 3

#### Geometría

b = 35 cm

h = 50 cm

d' = 6 cm

d = 44 cm

#### **Acero Longitudinal**

 $\rho = 0.007$ 

 $As = 10.78 cm^2 \rightarrow 4\phi 18 mm$ 

#### Acero Transversal

 $d_{estribo} = 10 mm$ sep. estribos = 10 cm

# 2.5.5. Determinación de los coeficientes $\alpha_1$ y $\beta_1$ para los modelos de Park, Hognestad, Rüsch y Whitney (ACI)

En la investigación se describen 2 métodos para el cálculo de los diagramas M- $\varphi$ : el método de las fibras y el método de los diagramas rectangulares equivalentes. Para el desarrollo de este trabajo se utilizó el segundo método, que consiste en hallar ecuaciones, por medio de integración, que permitan conocer los valores de las constantes  $\alpha_I$  y  $\beta_I$  en cualquier punto de deformación del hormigón, siempre y cuando esté dentro del rango permitido definido por el autor de cada modelo.

A continuación se resume las ecuaciones de  $\alpha_I$  y  $\beta_I$  para todos los modelos constitutivos que se utilizarán en el cálculo:

Tabla 2. Resumen de las ecuaciones de  $\alpha_1$  y  $\beta_1$ 

| DIA         | GRAMA                       | $a_1$                                                                                                     | $oldsymbol{eta}_1$                                                                                                          |
|-------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Park et al. | $\varepsilon'_c < 0.0025$   | $\frac{\varepsilon_c'}{\beta_1  \varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right]$ | $2\left[1 - \frac{\frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0}}{1 - \frac{\varepsilon_c'}{3k\varepsilon_0}}\right]$ |
|             | $0.0025 \le \varepsilon'_c$ | Ecuación 1                                                                                                | Ecuación 2                                                                                                                  |
|             | < 0.0269                    | Leuteion 1                                                                                                | Leucion 2                                                                                                                   |
|             | $\varepsilon'_c \ge 0.0269$ | Ecuación 3                                                                                                | Ecuación 4                                                                                                                  |
| Hognestad   | ε' <sub>c</sub> < 0.002     | $\frac{6\left(1-\frac{\Omega}{3}\right)^2}{\left(\frac{4}{\Omega}-1\right)}$                              | $\frac{4-\Omega}{6-2\Omega}$                                                                                                |
|             | $\varepsilon'_c \ge 0.002$  | $\frac{1.15 - 0.075\Omega - 0.408/\Omega}{\beta_1}$                                                       | $2\left[1 - \frac{0.575\Omega^2 - 0.05\Omega^3 - 0.108}{\Omega(1.15\Omega - 0.075\Omega^2 - 0.408)}\right]$                 |
| Rüsch       | $\varepsilon'_c < 0.002$    | $\frac{6\left(1-\frac{\Omega}{3}\right)^2}{\left(\frac{4}{\Omega}-1\right)}$                              | $\frac{4-\Omega}{6-2\Omega}$                                                                                                |

|         | $\varepsilon'_c \ge 0.002$   | $\frac{3\Omega-1}{3\Omega\beta_1}$ | $2\left[1 - \frac{6\Omega^2 - 1}{4\Omega(3\Omega - 1)}\right]$ |
|---------|------------------------------|------------------------------------|----------------------------------------------------------------|
| Whitney | $\varepsilon'_c \ge 0.00045$ | 0.85                               | Depende del $f'_c$ del hormigón (ver <i>Figura 4</i> )         |

Ecuación 1:

$$\alpha_1 = \frac{1}{\beta_1 \, \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 \, + k \varepsilon_c' \left( 1 - m \, \frac{\varepsilon_c'}{2} + m \, k \, \varepsilon_0 \, \right) - k^2 \varepsilon_0 \left( 1 + m \, \frac{k \varepsilon_0}{2} \right) \right\}$$

Ecuación 2:

$$\beta_1 = \frac{2}{\varepsilon_c'} \left\{ \varepsilon_c' - \frac{\frac{5}{12} k^2 (\varepsilon_0)^2 + (\varepsilon_c')^2 \left[ \frac{1}{2} - \frac{m \varepsilon_c'}{3} + \frac{m k \varepsilon_0}{2} \right] - k^2 (\varepsilon_0)^2 \left[ \frac{1}{2} + \frac{1}{6} m k \varepsilon_0 \right]}{\frac{2}{3} k \varepsilon_0 + \varepsilon_c' \left( 1 - m \frac{\varepsilon_c'}{2} + m k \varepsilon_0 \right) - k \varepsilon_0 \left( 1 + m \frac{k \varepsilon_0}{2} \right)} \right\}$$

Ecuación 3:

$$\alpha_1 = \frac{1}{\beta_1 \, \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 \, + k \varepsilon_u \left( 1 - m \, \frac{\varepsilon_u}{2} + m k \varepsilon_0 \, \right) - k^2 \varepsilon_0 \left( 1 + m \, \frac{k \varepsilon_0}{2} \right) + 0.2 k \varepsilon_{ci} - 0.2 k \varepsilon_u \right\}$$

Ecuación 4:

$$\beta_1 = \frac{2}{\varepsilon_c'} \left\{ \varepsilon_c' - \frac{\frac{5}{12} k^2 (\varepsilon_0)^2 + (\varepsilon_u)^2 \left[ \frac{1}{2} - \frac{m\varepsilon_u}{3} + \frac{mk\varepsilon_0}{2} \right] - k^2 (\varepsilon_0)^2 \left[ \frac{1}{2} + \frac{1}{6} mk\varepsilon_0 \right] + 0.1 (\varepsilon_c')^2 - 0.1 (\varepsilon_u)^2}{\frac{2}{3} k\varepsilon_0 + \varepsilon_u \left( 1 - m \frac{\varepsilon_u}{2} + m k \varepsilon_0 \right) - k\varepsilon_0 \left( 1 + m \frac{k\varepsilon_0}{2} \right) + 0.2\varepsilon_{ci} - 0.2\varepsilon_u} \right\}$$

#### • Ejemplo de cálculo:

Basándose en el modelo de Hognestad, se toma un valor de  $\varepsilon_c'=0.0016$ .

Luego se obtiene el valor de  $\Omega$ :

$$\Omega = \frac{\varepsilon_c'}{\varepsilon_o} = \frac{0.0016}{0.002} = 0.8$$

El valor de deformación pertenece a la primera rama del modelo, por lo tanto se usan las ecuaciones que corresponden, reemplazando el valor de  $\Omega$ :

$$\begin{cases} \alpha_1 = \frac{6\left(1 - \frac{\Omega}{3}\right)^2}{\left(\frac{4}{\Omega} - 1\right)} = \frac{6\left(1 - \frac{0.8}{3}\right)^2}{\left(\frac{4}{0.8} - 1\right)} = 0.807 \\ \beta_1 = \frac{4 - \Omega}{6 - 2\Omega} = \frac{4 - 0.8}{6 - 2(0.8)} = 0.727 \end{cases}$$

## 2.5.6. Cálculo de los valores de momento y de curvatura para los modelos de Park, Hognestad, Rüsch y Whitney (ACI)

El procedimiento para hallar los valores de momento y de curvatura para cada valor de deformación del hormigón es el que se describe en 1.4.5.5.

Se calculó los valores para las 3 secciones propuestas con todos los modelos constitutivos citados, hasta la deformación máxima de cada modelo.

#### • Ejemplo de cálculo:

Siguiendo con el mismo ejemplo, y tomando la viga de b=25 cm y h=40 cm para el cálculo, se continúa con el procedimiento.

Asumiendo que el acero está en fluencia, se calcula la distancia al eje neutro, con unidades *Kg* y *cm* por conveniencia:

$$c = \frac{A_s. f_y}{\alpha_1 \beta_1 f_c' b - \frac{1}{2} f_r \left(\frac{0,0001}{\varepsilon_c'}\right)}$$

$$c = \frac{5.95 \ cm^2 (4281 \ Kg/cm^2)}{0.807 (0.727) \left(214 \frac{Kg}{cm^2}\right) (25 \ cm) - \frac{1}{2} (33 \ \frac{Kg}{cm^2}) \left(\frac{0.0001}{0.0016}\right)} = 8.18 \ cm$$

A continuación se calcula la deformación del acero (de prueba):

$$\varepsilon_s = \frac{d-c}{c} \varepsilon'_c = \frac{(34-8.18)cm}{8.18 cm} (0.0016) = 0.0051 > \varepsilon_y$$

Si el valor calculado de la deformación del acero es menor a 0.002 entonces se sabe que el acero no entra en fluencia, por lo que se debe recalcular el valor de c con la siguiente ecuación cuadrática:

$$\left[\alpha_{1}\beta_{1}f_{c}'b - \frac{0.00005f_{r}}{\varepsilon'_{c}}\right]c^{2} + (A_{s}E_{s}\varepsilon'_{c})c - (A_{s}E_{s}d\ \varepsilon'_{c}) = 0$$

Y luego se recalcula la deformación del acero para confirmar que éste no entra en fluencia.

Una vez que se tiene la deformación del acero y distancia al eje neutro reales se calcula el esfuerzo de tracción del acero:

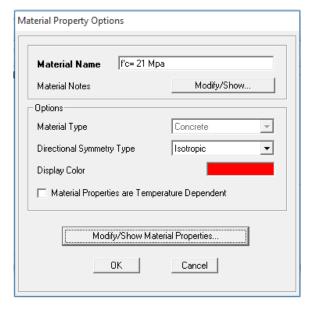
$$fs = E_s \varepsilon_s = 200000 Mpa(0.0051) = 1020 Mpa$$

Ahora se calcula el momento flector de la sección, considerando la resistencia a la tracción del hormigón.

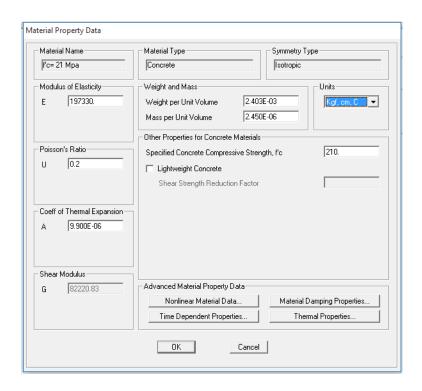
$$M = \alpha_1 \cdot \beta_1 \cdot f_c' \cdot b \cdot c \left( d - \frac{1}{2} \beta_1 c \right) - \frac{1}{2} f_r b \left( \frac{0,0001}{\varepsilon_c'} \right) c \left[ d - c - \frac{2}{3} \left( \frac{0,0001}{\varepsilon_c'} \right) c \right]$$

$$M = 0.807(0.727)(21 N/mm)(250 mm)(81.8 mm) \left(340 mm - \frac{1}{2}(0.727)(81.8 mm)\right) - \frac{1}{2}(3.21 \frac{N}{mm})(250 mm) \left(\frac{0,0001}{0.0016}\right)(81.8 mm) \left[340 mm - 81.8 mm - \frac{2}{3}\left(\frac{0,0001}{0.0016}\right)81.8 mm\right]$$

$$M = 77.65 \, KN - m$$


Por último se calcula la curvatura:

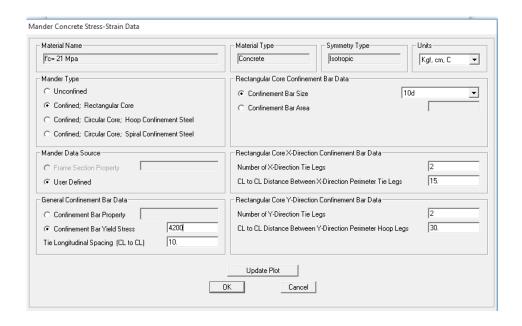
$$\varphi = \frac{\varepsilon_c}{c} = \frac{0.0016}{8.18 \ cm} = 0.000196 \ rad/cm$$


# 2.5.7. Cálculo de los valores de momento y de curvatura para el modelo de Mander (confinado)

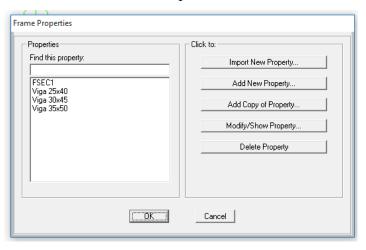
El cálculo de los valores para el diagrama momento-curvatura con el modelo de Mander (para hormigón confinado) se lo realizó con la ayuda del SAP 200.

Primeramente se definió los materiales con las características previamente mencionadas. Se define el hormigón de 21 MPa:




En la ventana "Material Property Data" se debe introducir el valor de *Ec* calculado (19733 Mpa):

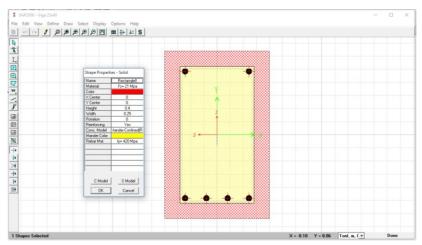



En la ventana "Nonlinear Material Data" se elige el modelo de Mander para la curva esfuerzo-deformación del hormigón:

| , C ▼  |
|--------|
|        |
|        |
| ofinad |
| afinad |
| ofined |
| enneu  |
|        |
|        |
| 03     |
| 03     |
|        |
|        |
|        |
|        |

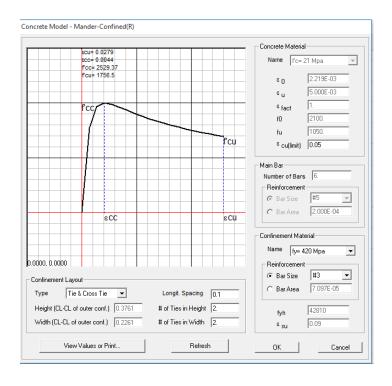

Luego se va a la opción "Show Stress-Strain Plots" y luego "Modify/Show Mander Data", donde aparecerá una ventana en la que se deberá seleccionar el modelo "Confinado para núcleos rectangulares", y además se deberá definir el área, separación longitudinal, número de ramas y separación entre ramas de los estribos:



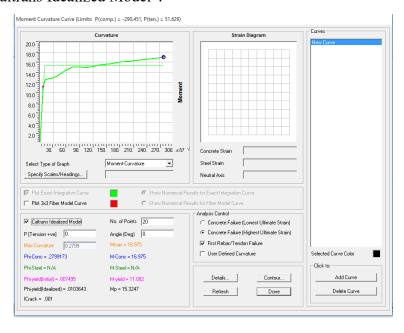

Una vez definidos los materiales con los correctos modelos constitutivos, se procede a definir las 3 secciones propuestas para el cálculo, eligiendo "Add New Property" en la ventada de definir secciones tipo Frame:



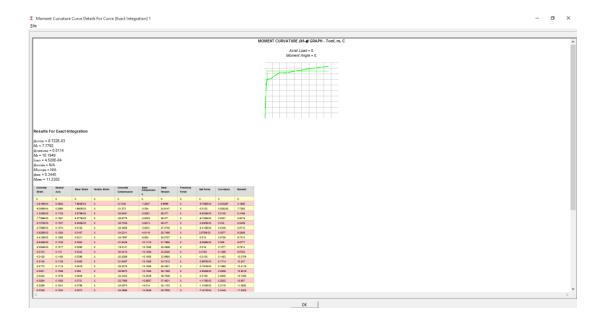
En la ventana que aparece se escoge "Other" como el tipo de sección a crear, y se selecciona "Section Designer":




Dentro del "Section Designer" se deberá crear la sección rectangular que se requiere, dando clic derecho en la figura y en los refuerzos longitudinales para mostrar opciones de la sección:




Es esa ventana se podrá configurar la geometría de la sección, se elegirá que es una sección con refuerzo y se seleccionará el modelo "Mander-Confined".


Luego, dando clic en la opción "C Model" aparecerá una ventana, donde se podrá configurar el diámetro del estribo y el número de ramas por sección:



Ahora que está definida adecuadamente la sección, se deberá ir a la opción "Show Moment-Curvature Curve" del menú "Display", y en la ventana que aparece seleccionar "Caltrans Idealized Model":



Dando clic en la opción "Details" aparecerá una ventana que muestra la gráfica Momento-Curvatura de la sección, y su respectivo cálculo:



Estos datos pueden ser exportados a otros programas; en nuestro caso los datos de momento y curvatura de las 3 secciones fueron exportados a Excel, para poder comparar los diagramas de Mander con los de los demás modelos.

# 2.5.8. Representación gráfica de las curvas de Momento-Curvatura (M- $\varphi$ ) de todos los modelos

Una vez obtenidos los valores de momento y curvatura de todos los modelos constitutivos para las 3 secciones de viga propuestas, se ordenó la información por medio de tablas y por medio gráficos de dispersión se representó la curva momento-curvatura de cada uno de estos modelos.

#### **2.5.8.1.** Resultados

A continuación se presenta las tablas de cálculo de los diagramas de momentocurvatura con sus respectivos gráficos:

## • Sección 1 (Viga de 25 cm x 40 cm)

Tabla 3. Cálculo con el modelo de Park (Sección 1)

|         |          |                  |                  |                  |                 |                          |              | MOL                | DELO DE PARK             |                 |                  |                           |                 |                              |                  |                      |
|---------|----------|------------------|------------------|------------------|-----------------|--------------------------|--------------|--------------------|--------------------------|-----------------|------------------|---------------------------|-----------------|------------------------------|------------------|----------------------|
|         | #        | ε' <sub>ci</sub> | $a_{\mathbf{i}}$ | βi               | C <sub>i1</sub> | ε <sub>s de prueba</sub> | а            | b                  | С                        | C <sub>i2</sub> | x2               | C <sub>i definitivo</sub> | ε <sub>si</sub> | $\mathbf{f_{si}}$ (tracción) | $\mathbf{M_{i}}$ | ф <sub>і</sub>       |
|         |          |                  |                  |                  | (cm)            |                          |              |                    |                          | (cm)            | (m)              | (cm)                      |                 | МРа                          | KN-m             | (rad/cm)             |
|         | 1        | 0.0000           | 0.0000           | 0.6667           | 0.00            | 0.00000                  | 0            | 0                  | 0                        | 0.000           | 0.000            | 0.000                     | 0.00000         | 0                            | 0.00             | 0.00000              |
|         | 3        | 0.0002           | 0.1450           | 0.6712           | 80.46           | -0.00012                 | 311          | 23800              | -8092000                 | 12.76           | -20.42           | 12.76                     | 0.00033         | 67                           | 15.03            | 0.000016             |
|         | 4        | 0.0004           | 0.2802           | 0.6760           | 27.95           | 0.00009                  | 894          | 47600              | -16184000                | 11.05           | -16.38           | 11.05                     | 0.00083         | 166                          | 30.92            | 0.000036             |
| PARK    | 5        | 0.0006           | 0.4055           | 0.6811           | 18.07           | 0.00053                  | 1383         | 71400              | -24276000                | 10.92           | -16.08           | 10.92                     | 0.00127         | 254                          | 46.33            | 0.000055             |
| PA      | 6        | 0.0008           | 0.5210           | 0.6864           | 13.68           | 0.00119                  | 1827         | 95200              | -32368000                | 10.96           | -16.17           | 10.96                     | 0.00168         | 336                          | 60.99            | 0.000073             |
| RAMA    | 7        | 0.0010           | 0.6267           | 0.6921           | 11.17           | 0.00204                  | 2237         | 119000             | -40460000                | 11.05           | -16.37           | 11.05                     | 0.00208         | 415                          | 74.94            | 0.000091             |
| A       | 8        | 0.0012           | 0.7227           | 0.6982           | 9.55            | 0.00307                  | 2616         | 142800             | -48552000                | 11.17           | -16.62           | 9.55                      | 0.00307         | 420                          | 76.85            | 0.000126             |
| 4 R     | 9        | 0.0014           | 0.8091           | 0.7046           | 8.43            | 0.00425                  | 2965         | 166600             | -56644000                | 11.30           | -16.92           | 8.43                      | 0.00425         | 420                          | 77.69            | 0.000166             |
| PRIMERA | 10       | 0.0016           | 0.8860           | 0.7115           | 7.61            | 0.00555                  | 3284         | 190400             | -64736000                | 11.44           | -17.23           | 7.61                      | 0.00555         | 420                          | 78.30            | 0.000210             |
| W       | 11       | 0.0018           | 0.9533           | 0.7189           | 6.99            | 0.00696                  | 3576         | 214200             | -72828000                | 11.59           | -17.58           | 6.99                      | 0.00696         | 420                          | 78.76            | 0.000258             |
| PRI     | 12       | 0.0020           | 1.0113           | 0.7268           | 6.51            | 0.00845                  | 3839         | 238000             | -80920000                | 11.75           | -17.95           | 6.51                      | 0.00845         | 420                          | 79.11            | 0.000307             |
|         | 13       | 0.0022           | 1.0599           | 0.7352           | 6.14            | 0.00999                  | 4073         | 261800             | -89012000                | 11.91           | -18.34           | 6.14                      | 0.00999         | 420                          | 79.38            | 0.000359             |
|         | 14       | 0.0024           | 1.0994           | 0.7444           | 5.84            | 0.01157                  | 4280         | 285600             | -97104000                | 12.09           | -18.76           | 5.84                      | 0.01157         | 420                          | 79.57            | 0.000411             |
|         | 15       | 0.0025           | 1.1180           | 0.7500           | 5.70            | 0.01250                  | 4386         | 299344             | -101776868               | 12.20           | -19.02           | 5.70                      | 0.01250         | 420                          | 79.66            | 0.000442             |
| A       | 16       | 0.0025           | 1.1180           | 0.7500           | 5.70            | 0.01250                  | 4386         | 299344             | -101776868               | 12.20           | -19.02           | 5.70                      | 0.01250         | 420                          | 79.66            | 0.000442             |
| RAMA    | 17       | 0.0028           | 1.1510           | 0.7650           | 5.42            | 0.01476                  | 4608         | 333200             | -113288000               | 12.48           | -19.71           | 5.42                      | 0.01476         | 420                          | 79.81            | 0.000516             |
|         | 18       | 0.0030           | 1.1659           | 0.7759           | 5.28            | 0.01633                  | 4736         | 357000             | -121380000               | 12.68           | -20.22           | 5.28                      | 0.01633         | 420                          | 79.87            | 0.000569             |
| SEGUNDA | 19       | 0.0035           | 1.1857           | 0.8018           | 5.018           | 0.02021                  | 4980         | 416500             | -141610000               | 13.19           | -21.56           | 5.02                      | 0.02021         | 420                          | 79.96            | 0.000697             |
|         | 20       | 0.0075           | 1.1343           | 0.9247           | 4.54            | 0.04863<br>0.07234       | 5501<br>5359 | 892500             | -303450000               | 16.74<br>19.35  | -32.96           | 4.54                      | 0.04863         | 420<br>420                   | 79.72            | 0.001651             |
| )GI     | 21       | 0.0115<br>0.0165 | 1.0338<br>0.9045 | 0.9879<br>1.0498 | 4.66<br>5.02    | 0.07234                  | 5559<br>4982 | 1368500<br>1963500 | -465290000<br>-667590000 | 21.87           | -44.88<br>-61.28 | 4.66<br>5.02              | 0.07234         | 420                          | 79.21<br>78.39   | 0.002466<br>0.003290 |
| SE      | 22<br>23 | 0.0163           | 0.9043           | 1.1877           | 6.25            | 0.09333                  | 4982         | 3203414            | -1089160875              | 25.73           | -01.28           | 6.25                      | 0.09333         | 420                          | 75.70            | 0.003290             |
| _       | 24       | 0.0269           | 0.6420           | 1.1877           | 6.25            | 0.11964                  | 4002         | 3203414            | -1089160875              | 25.73           | -105.78          | 6.25                      | 0.11964         | 420                          | 75.70            | 0.004311             |
| RAMA    | 25       | 0.0279           | 0.6189           | 1.2025           | 6.40            | 0.12043                  | 3906         | 3322414            | -1129620875              | 26.03           | -111.10          | 6.40                      | 0.12043         | 420                          | 75.35            | 0.004363             |
| RA      | 26       | 0.0279           | 0.5981           | 1.2023           | 6.55            | 0.12043                  | 3816         | 3441414            | -1170080875              | 26.32           | -116.50          | 6.55                      | 0.12123         | 420                          | 75.02            | 0.004303             |
|         | 27       | 0.0289           | 0.5794           | 1.2277           | 6.69            | 0.12123                  | 3733         | 3560414            | -1210540875              | 26.59           | -121.97          | 6.69                      | 0.12123         | 420                          | 74.70            | 0.004469             |
| 3RA     | 28       | 0.0309           | 0.5623           | 1.2384           | 6.84            | 0.12282                  | 3655         | 3679414            | -1251000875              | 26.84           | -127.52          | 6.84                      | 0.12282         | 420                          | 74.39            | 0.004522             |

Tabla 4. Cálculo con el modelo de Hognestad (Sección 1)

|              |    |                  |           |                  |                    |                 |                          | MC   | DELO DE I | HOGNESTAD  |                 |        |                           |                    |                               |         |          |
|--------------|----|------------------|-----------|------------------|--------------------|-----------------|--------------------------|------|-----------|------------|-----------------|--------|---------------------------|--------------------|-------------------------------|---------|----------|
|              | #  | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $a_{\mathbf{i}}$ | $oldsymbol{eta_i}$ | c <sub>i1</sub> | E <sub>s de prueba</sub> | а    | b         | С          | C <sub>i2</sub> | x2     | c <sub>i definitivo</sub> | $\epsilon_{ m si}$ | f <sub>si</sub><br>(tracción) | $M_{i}$ | фi       |
|              |    |                  |           |                  |                    | (cm)            |                          |      |           |            | (cm)            | (m)    | (cm)                      |                    | MPa                           | KN-m    | (rad/cm) |
|              | 1  | 0.0000           | 0.000     | 0.0000           | 0.6667             | 0.00            | 0.00000                  | 0    | 0         | 0          | 0.00            | 0.00   | 0.00                      | 0.00000            | 0                             | 0.00    | 0.000000 |
|              | 2  | 0.0002           | 0.075     | 0.1090           | 0.6709             | 214.34          | -0.00013                 | 117  | 17850     | -6069000   | 16.41           | -31.72 | 16.41                     | 0.00016            | 32                            | 13.44   | 0.000009 |
|              | 3  | 0.0002           | 0.100     | 0.1438           | 0.6724             | 81.40           | -0.00012                 | 307  | 23800     | -8092000   | 12.82           | -20.57 | 12.82                     | 0.00033            | 66                            | 14.96   | 0.000016 |
| RAMA         | 4  | 0.0004           | 0.200     | 0.2751           | 0.6786             | 28.41           | 0.00008                  | 880  | 47600     | -16184000  | 11.13           | -16.54 | 11.13                     | 0.00082            | 164                           | 30.61   | 0.000036 |
| [₹           | 5  | 0.0006           | 0.300     | 0.3941           | 0.6852             | 18.50           | 0.00050                  | 1351 | 71400     | -24276000  | 11.02           | -16.31 | 11.02                     | 0.00125            | 250                           | 45.62   | 0.000054 |
| <5'          | 6  | 0.0008           | 0.400     | 0.5007           | 0.6923             | 14.12           | 0.00113                  | 1770 | 95200     | -32368000  | 11.10           | -16.48 | 11.10                     | 0.00165            | 330                           | 59.70   | 0.000072 |
| PRIMER,      | 7  | 0.0010           | 0.500     | 0.5952           | 0.7000             | 11.64           | 0.00192                  | 2147 | 119000    | -40460000  | 11.23           | -16.77 | 11.23                     | 0.00203            | 405                           | 72.89   | 0.000089 |
| $\mathbb{Z}$ | 8  | 0.0012           | 0.600     | 0.6776           | 0.7083             | 10.05           | 0.00286                  | 2487 | 142800    | -48552000  | 11.39           | -17.14 | 10.05                     | 0.00286            | 420                           | 76.31   | 0.000119 |
| PR           | 9  | 0.0014           | 0.700     | 0.7481           | 0.7174             | 8.96            | 0.00391                  | 2789 | 166600    | -56644000  | 11.57           | -17.55 | 8.96                      | 0.00391            | 420                           | 77.09   | 0.000156 |
|              | 10 | 0.0016           | 0.800     | 0.8067           | 0.7273             | 8.18            | 0.00505                  | 3055 | 190400    | -64736000  | 11.77           | -18.00 | 8.18                      | 0.00505            | 420                           | 77.65   | 0.000196 |
|              | 11 | 0.0018           | 0.900     | 0.8535           | 0.7381             | 7.61            | 0.00625                  | 3285 | 214200    | -72828000  | 11.98           | -18.50 | 7.61                      | 0.00625            | 420                           | 78.04   | 0.000237 |
|              | 12 | 0.0020           | 1.000     | 0.8889           | 0.7500             | 7.18            | 0.00747                  | 3480 | 238000    | -80920000  | 12.21           | -19.05 | 7.18                      | 0.00747            | 420                           | 78.30   | 0.000279 |
|              | 13 | 0.0022           | 1.100     | 0.9126           | 0.7633             | 6.87            | 0.00869                  | 3639 | 261800    | -89012000  | 12.45           | -19.65 | 6.87                      | 0.00869            | 420                           | 78.47   | 0.000320 |
| _            | 14 | 0.0024           | 1.200     | 0.9257           | 0.7778             | 6.64            | 0.00989                  | 3763 | 285600    | -97104000  | 12.71           | -20.30 | 6.64                      | 0.00989            | 420                           | 78.56   | 0.000361 |
| RAMA         | 15 | 0.0026           | 1.300     | 0.9325           | 0.7921             | 6.47            | 0.01106                  | 3863 | 309400    | -105196000 | 12.98           | -20.99 | 6.47                      | 0.01106            | 420                           | 78.60   | 0.000402 |
| RA           | 16 | 0.0028           | 1.400     | 0.9350           | 0.8060             | 6.34            | 0.01222                  | 3942 | 333200    | -113288000 | 13.25           | -21.70 | 6.34                      | 0.01222            | 420                           | 78.62   | 0.000442 |
| A            | 17 | 0.0030           | 1.500     | 0.9346           | 0.8191             | 6.24            | 0.01335                  | 4006 | 357000    | -121380000 | 13.51           | -22.43 | 6.24                      | 0.01335            | 420                           | 78.61   | 0.000481 |
| SEGUND       | 18 | 0.0032           | 1.600     | 0.9321           | 0.8315             | 6.16            | 0.01446                  | 4056 | 380800    | -129472000 | 13.78           | -23.17 | 6.16                      | 0.01446            | 420                           | 78.59   | 0.000519 |
| 30           | 19 | 0.0034           | 1.700     | 0.9281           | 0.8431             | 6.10            | 0.01555                  | 4096 | 404600    | -137564000 | 14.04           | -23.92 | 6.10                      | 0.01555            | 420                           | 78.57   | 0.000557 |
| SE           | 20 | 0.0036           | 1.800     | 0.9230           | 0.8541             | 6.05            | 0.01662                  | 4128 | 428400    | -145656000 | 14.30           | -24.68 | 6.05                      | 0.01662            | 420                           | 78.53   | 0.000595 |
|              | 21 | 0.0038           | 1.900     | 0.9170           | 0.8645             | 6.02            | 0.01766                  | 4151 | 452200    | -153748000 | 14.55           | -25.45 | 6.02                      | 0.01766            | 420                           | 78.49   | 0.000631 |
|              | 22 | 0.0040           | 2.000     | 0.9104           | 0.8744             | 5.99            | 0.01869                  | 4169 | 476000    | -161840000 | 14.80           | -26.22 | 5.99                      | 0.01869            | 420                           | 78.44   | 0.000667 |

Tabla 5. Cálculo con el modelo de Rüsch (Sección 1)

|         |    |                                         | -         |                       |        |                 |                          |      | MODELO I | E RÜSCH    |                 |        |                           |                          |                               |       |          |
|---------|----|-----------------------------------------|-----------|-----------------------|--------|-----------------|--------------------------|------|----------|------------|-----------------|--------|---------------------------|--------------------------|-------------------------------|-------|----------|
|         | #  | ε' <sub>ci</sub>                        | Ω=ε'ci/ε0 | $\alpha_{\mathbf{i}}$ | βi     | c <sub>i1</sub> | E <sub>s de prueba</sub> | а    | b        | с          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{\mathrm{si}}$ | f <sub>si</sub><br>(tracción) | $M_i$ | Фі       |
|         |    | *************************************** |           |                       |        | (cm)            |                          |      |          |            | (cm)            | (m)    | (cm)                      |                          | МРа                           | KN-m  | (rad/cm) |
|         | 1  | 0.0000                                  | 0.000     | 0.0000                | 0.6667 | 0.00            | 0.00000                  | 0    | 0        | 0          | 0.00            | 0.00   | 0.00                      | 0.00000                  | 0                             | 0.00  | 0.000000 |
|         | 2  | 0.0002                                  | 0.075     | 0.1090                | 0.6709 | 214.34          | -0.00013                 | 117  | 17850    | -6069000   | 16.41           | -31.72 | 16.41                     | 0.00016                  | 32                            | 13.44 | 0.000009 |
|         | 3  | 0.0002                                  | 0.100     | 0.1438                | 0.6724 | 81.40           | -0.00012                 | 307  | 23800    | -8092000   | 12.82           | -20.57 | 12.82                     | 0.00033                  | 66                            | 14.96 | 0.000016 |
| ₹¥      | 4  | 0.0004                                  | 0.200     | 0.2751                | 0.6786 | 28.41           | 0.00008                  | 880  | 47600    | -16184000  | 11.13           | -16.54 | 11.13                     | 0.00082                  | 164                           | 30.61 | 0.000036 |
| RAMA    | 5  | 0.0006                                  | 0.300     | 0.3941                | 0.6852 | 18.50           | 0.00050                  | 1351 | 71400    | -24276000  | 11.02           | -16.31 | 11.02                     | 0.00125                  | 250                           | 45.62 | 0.000054 |
| <5'     | 6  | 0.0008                                  | 0.400     | 0.5007                | 0.6923 | 14.12           | 0.00113                  | 1770 | 95200    | -32368000  | 11.10           | -16.48 | 11.10                     | 0.00165                  | 330                           | 59.70 | 0.000072 |
| 黑       | 7  | 0.0010                                  | 0.500     | 0.5952                | 0.7000 | 11.64           | 0.00192                  | 2147 | 119000   | -40460000  | 11.23           | -16.77 | 11.23                     | 0.00203                  | 405                           | 72.89 | 0.000089 |
| PRIMER, | 8  | 0.0012                                  | 0.600     | 0.6776                | 0.7083 | 10.05           | 0.00286                  | 2487 | 142800   | -48552000  | 11.39           | -17.14 | 10.05                     | 0.00286                  | 420                           | 76.31 | 0.000119 |
| PR      | 9  | 0.0014                                  | 0.700     | 0.7481                | 0.7174 | 8.96            | 0.00391                  | 2789 | 166600   | -56644000  | 11.57           | -17.55 | 8.96                      | 0.00391                  | 420                           | 77.09 | 0.000156 |
|         | 10 | 0.0016                                  | 0.800     | 0.8067                | 0.7273 | 8.18            | 0.00505                  | 3055 | 190400   | -64736000  | 11.77           | -18.00 | 8.18                      | 0.00505                  | 420                           | 77.65 | 0.000196 |
|         | 11 | 0.0018                                  | 0.900     | 0.8535                | 0.7381 | 7.61            | 0.00625                  | 3285 | 214200   | -72828000  | 11.98           | -18.50 | 7.61                      | 0.00625                  | 420                           | 78.04 | 0.000237 |
|         | 12 | 0.0020                                  | 1.000     | 0.8889                | 0.7500 | 7.18            | 0.00747                  | 3480 | 238000   | -80920000  | 12.21           | -19.05 | 7.18                      | 0.00747                  | 420                           | 78.30 | 0.000279 |
|         | 13 | 0.0022                                  | 1.100     | 0.9136                | 0.7628 | 6.86            | 0.00870                  | 3641 | 261800   | -89012000  | 12.45           | -19.64 | 6.86                      | 0.00870                  | 420                           | 78.48 | 0.000321 |
| MA      | 14 | 0.0024                                  | 1.200     | 0.9311                | 0.7756 | 6.62            | 0.00993                  | 3775 | 285600   | -97104000  | 12.70           | -20.26 | 6.62                      | 0.00993                  | 420                           | 78.60 | 0.000363 |
| RA      | 15 | 0.0026                                  | 1.300     | 0.9439                | 0.7878 | 6.43            | 0.01115                  | 3888 | 309400   | -105196000 | 12.94           | -20.90 | 6.43                      | 0.01115                  | 420                           | 78.68 | 0.000405 |
| A       | 16 | 0.0028                                  | 1.400     | 0.9534                | 0.7991 | 6.27            | 0.01238                  | 3986 | 333200   | -113288000 | 13.19           | -21.55 | 6.27                      | 0.01238                  | 420                           | 78.74 | 0.000447 |
| S       | 17 | 0.0030                                  | 1.500     | 0.9608                | 0.8095 | 6.14            | 0.01361                  | 4070 | 357000   | -121380000 | 13.43           | -22.20 | 6.14                      | 0.01361                  | 420                           | 78.79 | 0.000489 |
| SEGUND  | 18 | 0.0032                                  | 1.600     | 0.9665                | 0.8191 | 6.03            | 0.01484                  | 4144 | 380800   | -129472000 | 13.67           | -22.86 | 6.03                      | 0.01484                  | 420                           | 78.82 | 0.000531 |
| SE      | 19 | 0.0034                                  | 1.700     | 0.9711                | 0.8278 | 5.94            | 0.01607                  | 4209 | 404600   | -137564000 | 13.90           | -23.51 | 5.94                      | 0.01607                  | 420                           | 78.85 | 0.000573 |
|         | 20 | 0.0035                                  | 1.750     | 0.9731                | 0.8319 | 5.90            | 0.01668                  | 4239 | 416500   | -141610000 | 14.01           | -23.84 | 5.90                      | 0.01668                  | 420                           | 78.86 | 0.000594 |

Tabla 6. Cálculo con el modelo de Whitney (Sección 1)

|         |    |                  |           |             |                |                 |                          | MOI  | DELO DE W | HITNEY (ACI) |                 |        |                           |                    |                               |         |          |
|---------|----|------------------|-----------|-------------|----------------|-----------------|--------------------------|------|-----------|--------------|-----------------|--------|---------------------------|--------------------|-------------------------------|---------|----------|
|         | #  | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $a_{\rm i}$ | β <sub>i</sub> | C <sub>i1</sub> | ε <sub>s de prueba</sub> | a    | b         | С            | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{ m si}$ | f <sub>si</sub><br>(tracción) | $M_{i}$ | фі       |
|         |    |                  |           |             |                | (cm)            |                          |      |           |              | (cm)            | (m)    | (cm)                      |                    | MPa                           | KN-m    | (rad/cm) |
|         | 1  | 0.00045          | 0.225     | 0.85        | 0.85           | 6.75            | 0.00182                  | 3704 | 53550     | -18207000    | 6.33            | -7.77  | 6.33                      | 0.00197            | 394                           | 0.00    | 0.000000 |
|         | 2  | 0.00045          | 0.225     | 0.85        | 0.85           | 6.75            | 0.00182                  | 3704 | 53550     | -18207000    | 6.33            | -7.77  | 6.33                      | 0.00197            | 394                           | 73.62   | 0.000071 |
| MA.     | 3  | 0.00060          | 0.300     | 0.85        | 0.85           | 6.71            | 0.00244                  | 3726 | 71400     | -24276000    | 7.17            | -9.09  | 6.71                      | 0.00244            | 420                           | 78.05   | 0.000089 |
| RAMA    | 4  | 0.00080          | 0.400     | 0.85        | 0.85           | 6.68            | 0.00327                  | 3743 | 95200     | -32368000    | 8.11            | -10.66 | 6.68                      | 0.00327            | 420                           | 78.02   | 0.000120 |
| ~       | 5  | 0.00100          | 0.500     | 0.85        | 0.85           | 6.66            | 0.00411                  | 3753 | 119000    | -40460000    | 8.92            | -12.09 | 6.66                      | 0.00411            | 420                           | 78.01   | 0.000150 |
| PRIMER, | 6  | 0.00120          | 0.600     | 0.85        | 0.85           | 6.65            | 0.00494                  | 3760 | 142800    | -48552000    | 9.62            | -13.42 | 6.65                      | 0.00494            | 420                           | 78.00   | 0.000181 |
| M       | 7  | 0.00140          | 0.700     | 0.85        | 0.85           | 6.64            | 0.00577                  | 3764 | 166600    | -56644000    | 10.25           | -14.68 | 6.64                      | 0.00577            | 420                           | 77.99   | 0.000211 |
| ES ES   | 8  | 0.00160          | 0.800     | 0.85        | 0.85           | 6.63            | 0.00660                  | 3768 | 190400    | -64736000    | 10.82           | -15.88 | 6.63                      | 0.00660            | 420                           | 77.99   | 0.000241 |
|         | 9  | 0.00180          | 0.900     | 0.85        | 0.85           | 6.63            | 0.00743                  | 3771 | 214200    | -72828000    | 11.34           | -17.02 | 6.63                      | 0.00743            | 420                           | 77.99   | 0.000272 |
|         | 10 | 0.00200          | 1.000     | 0.85        | 0.85           | 6.62            | 0.00827                  | 3773 | 238000    | -80920000    | 11.83           | -18.13 | 6.62                      | 0.00827            | 420                           | 77.99   | 0.000302 |
| ₹       | 11 | 0.00220          | 1.100     | 0.85        | 0.85           | 6.62            | 0.00910                  | 3775 | 261800    | -89012000    | 12.27           | -19.21 | 6.62                      | 0.00910            | 420                           | 77.98   | 0.000332 |
| AM      | 12 | 0.00240          | 1.200     | 0.85        | 0.85           | 6.62            | 0.00993                  | 3776 | 285600    | -97104000    | 12.69           | -20.26 | 6.62                      | 0.00993            | 420                           | 77.98   | 0.000363 |
| . R     | 13 | 0.00260          | 1.300     | 0.85        | 0.85           | 6.62            | 0.01076                  | 3778 | 309400    | -105196000   | 13.09           | -21.28 | 6.62                      | 0.01076            | 420                           | 77.98   | 0.000393 |
| DA      | 14 | 0.00280          | 1.400     | 0.85        | 0.85           | 6.61            | 0.01160                  | 3779 | 333200    | -113288000   | 13.46           | -22.28 | 6.61                      | 0.01160            | 420                           | 77.98   | 0.000423 |
| 2]      | 15 | 0.00300          | 1.500     | 0.85        | 0.85           | 6.61            | 0.01243                  | 3780 | 357000    | -121380000   | 13.81           | -23.25 | 6.61                      | 0.01243            | 420                           | 77.98   | 0.000454 |

Tabla 7. Cálculo con el modelo de Mander (Sección 1)

|    |                         |            |                 |                  | MO                     | DELO DE MA          | ANDER (SA        | AP 2000)                |            |           |         |         |
|----|-------------------------|------------|-----------------|------------------|------------------------|---------------------|------------------|-------------------------|------------|-----------|---------|---------|
| #  | Deformación<br>Concreto | Eje Neutro | Defor.<br>Acero | Defor.<br>Tendón | Compresión<br>Concreto | Compresión<br>Acero | Tensión<br>Acero | Fuerza Pre-<br>esfuerzo | Fuerza Red | Curvatura | Momento | Momento |
|    |                         | (cm)       |                 |                  | (KN/cm2)               | (KN/cm2)            | (KN/cm2)         | (KN)                    | (KN)       | (rad/cm)  | (KN-cm) | (KN-m)  |
| 1  | 0.0000                  | 0.00       | 0.0000          | 0.00             | 0.00                   | 0.00                | 0.00             | 0.00                    | 0.00       | 0.000000  | 0       | 0.00    |
| 2  | -0.0004                 | 9.02       | 0.0008          | 0.00             | -85.76                 | -12.40              | 98.06            | 0.00                    | -0.10      | 0.000033  | 3104    | 31.04   |
| 3  | -0.0009                 | 8.65       | 0.0020          | 0.00             | -208.62                | -32.89              | 241.39           | 0.00                    | -0.12      | 0.000082  | 7580    | 75.80   |
| 4  | -0.0013                 | 11.02      | 0.0039          | 0.00             | -221.13                | -37.54              | 258.61           | 0.00                    | -0.06      | 0.000148  | 8254    | 82.54   |
| 5  | -0.0017                 | 12.51      | 0.0064          | 0.00             | -221.41                | -37.29              | 258.61           | 0.00                    | -0.09      | 0.000231  | 8338    | 83.38   |
| 6  | -0.0022                 | 13.37      | 0.0094          | 0.00             | -222.84                | -35.81              | 258.61           | 0.00                    | -0.04      | 0.000330  | 8381    | 83.81   |
| 7  | -0.0028                 | 13.74      | 0.0128          | 0.00             | -230.38                | -38.08              | 268.46           | 0.00                    | -0.01      | 0.000445  | 8700    | 87.00   |
| 8  | -0.0035                 | 13.88      | 0.0167          | 0.00             | -237.63                | -44.25              | 281.90           | 0.00                    | 0.03       | 0.000577  | 9106    | 91.06   |
| 9  | -0.0044                 | 13.92      | 0.0211          | 0.00             | -242.81                | -54.17              | 296.85           | 0.00                    | -0.13      | 0.000725  | 9543    | 95.43   |
| 10 | -0.0059                 | 13.32      | 0.0253          | 0.00             | -212.25                | -99.36              | 311.56           | 0.00                    | -0.05      | 0.000890  | 9687    | 96.87   |
| 11 | -0.0084                 | 12.17      | 0.0292          | 0.00             | -189.40                | -129.31             | 318.55           | 0.00                    | -0.16      | 0.001071  | 9563    | 95.63   |
| 12 | -0.0104                 | 11.80      | 0.0342          | 0.00             | -196.15                | -129.31             | 325.61           | 0.00                    | 0.15       | 0.001269  | 9684    | 96.84   |
| 13 | -0.0125                 | 11.58      | 0.0396          | 0.00             | -204.24                | -129.31             | 333.41           | 0.00                    | -0.14      | 0.001483  | 9876    | 98.76   |
| 14 | -0.0148                 | 11.38      | 0.0455          | 0.00             | -211.33                | -129.31             | 340.60           | 0.00                    | -0.04      | 0.001714  | 10049   | 100.49  |
| 15 | -0.0173                 | 11.18      | 0.0516          | 0.00             | -218.08                | -129.31             | 347.35           | 0.00                    | -0.03      | 0.001962  | 10210   | 102.10  |
| 16 | -0.0201                 | 10.95      | 0.0580          | 0.00             | -225.13                | -129.31             | 354.40           | 0.00                    | -0.04      | 0.002225  | 10377   | 103.77  |
| 17 | -0.0232                 | 10.76      | 0.0649          | 0.00             | -229.89                | -130.97             | 360.72           | 0.00                    | -0.13      | 0.002505  | 10531   | 105.31  |
| 18 | -0.0264                 | 10.58      | 0.0721          | 0.00             | -233.36                | -134.04             | 367.39           | 0.00                    | -0.01      | 0.002802  | 10696   | 106.96  |
| 19 | -0.0299                 | 10.41      | 0.0796          | 0.00             | -236.32                | -137.43             | 373.73           | 0.00                    | -0.01      | 0.003115  | 10854   | 108.54  |
| 20 | -0.0336                 | 10.24      | 0.0874          | 0.00             | -238.96                | -141.16             | 380.11           | 0.00                    | -0.01      | 0.003445  | 11013   | 110.13  |

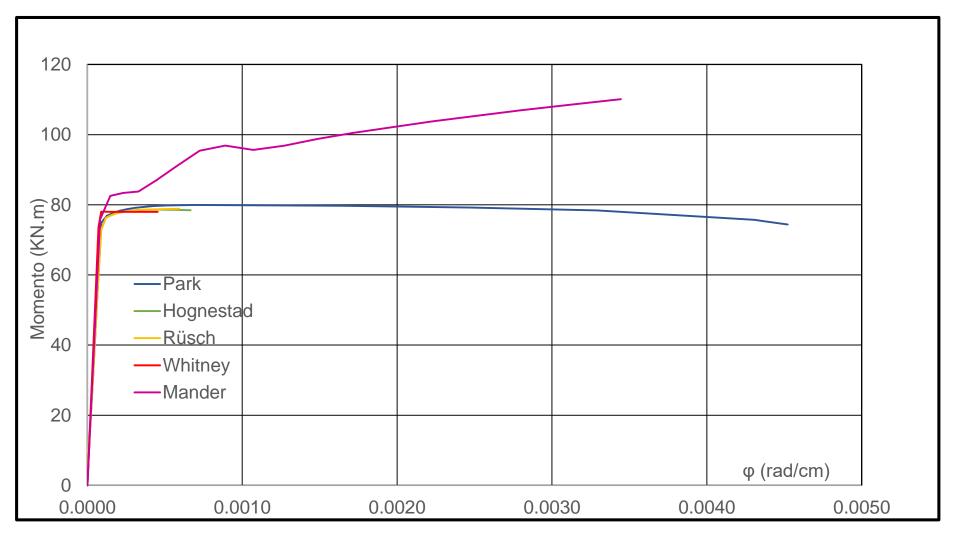



Figura 20. Diagramas de momento-curvatura (Sección 1)

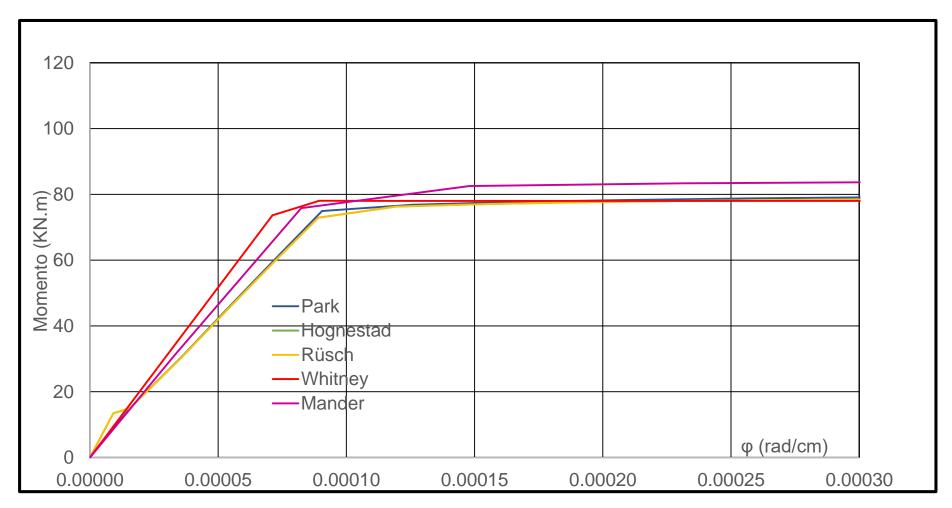



Figura 21. Diagramas de momento-curvatura [ampliados en x] (Sección 1)

## • Sección 2 (Viga de 30 cm x 45 cm)

Tabla 8. Cálculo con el modelo de Park (Sección 2)

|              |          |                  |                  |                  |                 |                          |              | MOD                | ELO DE PARK                |                 |                  | -                         |                 |                           |                  |                      |
|--------------|----------|------------------|------------------|------------------|-----------------|--------------------------|--------------|--------------------|----------------------------|-----------------|------------------|---------------------------|-----------------|---------------------------|------------------|----------------------|
|              | #        | ε' <sub>ci</sub> | $a_{\mathbf{i}}$ | β <sub>i</sub>   | c <sub>i1</sub> | € <sub>s</sub> de prueba | a            | b                  | С                          | c <sub>i2</sub> | x2               | C <sub>i definitivo</sub> | $\epsilon_{si}$ | <b>f</b> si<br>(tracción) | $M_{i}$          | фі                   |
|              |          |                  |                  |                  | (cm)            |                          |              |                    |                            | (cm)            | (m)              | (cm)                      |                 | МРа                       | KN-m             | (rad/cm)             |
|              | 1        | 0.0000           | 0.0000           | 0.6667           | 0.00            | 0.00000                  | 0            | 0                  | 0                          | 0.000           | 0.000            | 0.000                     | 0.00000         | 0                         | 0.00             | 0.00000              |
|              | 3        | 0.0002           | 0.1450           | 0.6712           | 92.29           | -0.00012                 | 373          | 32760              | -12776400                  | 14.63           | -23.42           | 14.63                     | 0.00033         | 67                        | 23.73            | 0.000014             |
|              | 4        | 0.0004           | 0.2802           | 0.6760           | 32.06           | 0.00009                  | 1073         | 65520              | -25552800                  | 12.68           | -18.78           | 12.68                     | 0.00083         | 166                       | 48.82            | 0.000032             |
| PARK         | 5        | 0.0006           | 0.4055           | 0.6811           | 20.73           | 0.00053                  | 1660         | 98280              | -38329200                  | 12.52           | -18.44           | 12.52                     | 0.00127         | 254                       | 73.15            | 0.000048             |
|              | 6        | 0.0008           | 0.5210           | 0.6864           | 15.69           | 0.00119                  | 2193         | 131040             | -51105600                  | 12.57           | -18.54           | 12.57                     | 0.00168         | 336                       | 96.29            | 0.000064             |
| RAMA         | 7        | 0.0010           | 0.6267           | 0.6921           | 12.81           | 0.00204                  | 2684         | 163800             | -63882000                  | 12.67           | -18.78           | 12.67                     | 0.00208         | 415                       | 118.33           | 0.000079             |
| S            | 8        | 0.0012           | 0.7227           | 0.6982           | 10.96           | 0.00307                  | 3139         | 196560             | -76658400                  | 12.81           | -19.07           | 10.96                     | 0.00307         | 420                       | 121.33           | 0.000110             |
|              | 9        | 0.0014           | 0.8091           | 0.7046           | 9.67            | 0.00425                  | 3558         | 229320             | -89434800                  | 12.96           | -19.40           | 9.67                      | 0.00425         | 420                       | 122.66           | 0.000145             |
| PRIMERA      | 10       | 0.0016           | 0.8860           | 0.7115           | 8.73            | 0.00555                  | 3941         | 262080             | -102211200                 | 13.12           | -19.77           | 8.73                      | 0.00555         | 420                       | 123.63           | 0.000183             |
| $\mathbb{Z}$ | 11       | 0.0018           | 0.9533           | 0.7189           | 8.02            | 0.00696                  | 4291         | 294840             | -114987600                 | 13.29           | -20.16           | 8.02                      | 0.00696         | 420                       | 124.36           | 0.000225             |
| PR.          | 12       | 0.0020           | 1.0113           | 0.7268           | 7.47            | 0.00845                  | 4606         | 327600             | -127764000                 | 13.47           | -20.59           | 7.47                      | 0.00845         | 420                       | 124.91           | 0.000268             |
| , .          | 13       | 0.0022           | 1.0599           | 0.7352           | 7.04            | 0.00999                  | 4888         | 360360             | -140540400                 | 13.67           | -21.04           | 7.04                      | 0.00999         | 420                       | 125.32           | 0.000313             |
|              | 14       | 0.0024           | 1.0994           | 0.7444           | 6.70            | 0.01157                  | 5136         | 393120             | -153316800                 | 13.87           | -21.52           | 6.70                      | 0.01157         | 420                       | 125.64           | 0.000358             |
|              | 15       | 0.0025           | 1.1180           | 0.7500           | 6.54            | 0.01250                  | 5263         | 412038             | -160694758                 | 13.99           | -21.82           | 6.54                      | 0.01250         | 420                       | 125.78           | 0.000385             |
| A            | 16       | 0.0024           | 1.1180           | 0.7500           | 6.54            | 0.01203                  | 5263         | 396872             | -154780126                 | 13.79           | -21.33           | 6.54                      | 0.01203         | 420                       | 125.78           | 0.000371             |
| RAMA         | 17       | 0.0028           | 1.1510           | 0.7650           | 6.22            | 0.01476                  | 5530         | 458640             | -178869600                 | 14.31           | -22.60           | 6.22                      | 0.01476         | 420                       | 126.01           | 0.000450             |
|              | 18       | 0.0030           | 1.1659           | 0.7759           | 6.05            | 0.01633                  | 5683         | 491400             | -191646000                 | 14.54           | -23.19           | 6.05                      | 0.01633         | 420                       | 126.11           | 0.000496             |
| DA           | 19       | 0.0035           | 1.1857           | 0.8018           | 5.756           | 0.02021                  | 5976         | 573300             | -223587000                 | 15.13           | -24.73           | 5.76                      | 0.02021         | 420                       | 126.24           | 0.000608             |
|              | 20       | 0.0075           | 1.1343           | 0.9247           | 5.21            | 0.04863                  | 6601         | 1228500            | -479115000<br>724642000    | 19.20           | -37.81           | 5.21                      | 0.04863         | 420<br>420                | 125.87           | 0.001439             |
| SEGUND       | 21       | 0.0115<br>0.0165 | 0.9045           | 0.9879<br>1.0498 | 5.35            | 0.07234<br>0.09535       | 6430<br>5979 | 1883700<br>2702700 | -734643000<br>-1054053000  | 22.19           | -51.49<br>-70.29 | 5.35                      | 0.07234         | 420                       | 125.07<br>123.77 | 0.002150<br>0.002868 |
| S            | 22       | 0.0163           | 0.9043           | 1.0498           | 7.16            | 0.09333                  | 4802         | 4409406            | -1719668192                | 29.51           | -121.34          | 7.16                      | 0.09333         | 420                       | 119.52           | 0.002868             |
| _            | 23<br>24 | 0.0269           | 0.6420           | 1.1877           | 7.16            | 0.11964                  | 4802         | 4409406            | -1719668192                | 29.51           | -121.34          | 7.16                      | 0.11964         | 420                       | 119.52           | 0.003758             |
| RAMA         |          | 0.0209           | 0.6189           | 1.2025           | 7.10            | 0.11904                  | 4687         | 4573206            | -1783550192                | 29.86           | -121.34          | 7.10                      | 0.11904         | 420                       | 118.98           | 0.003738             |
| [A]          | 25       | 0.0279           | 0.5981           | 1.2023           | 7.54            | 0.12043                  | 4579         | 4373206<br>4737006 | -1763330192<br>-1847432192 | 30.19           | -127.44          | 7.54                      | 0.12043         | 420                       | 118.45           | 0.003850             |
|              | 26<br>27 | 0.0289           | 0.5794           | 1.2137           | 7.68            | 0.12123                  | 4579         | 4900806            | -1847432192<br>-1911314192 | 30.19           | -133.03          | 7.51                      | 0.12123         | 420                       | 117.94           | 0.003896             |
| 3RA          | 28       | 0.0299           | 0.5623           | 1.2384           | 7.84            | 0.12203                  | 4479         | 5064606            | -1975196192                | 30.79           | -139.91          | 7.84                      | 0.12203         | 420                       | 117.45           | 0.003896             |

Tabla 9. Cálculo con el modelo de Hognestad (Sección 2)

|        |    |                  |           |                       |        |                 |                          | MOD  | ELO DE HO | GNESTAD    |                 |        |                           |                 |                           |                  |          |
|--------|----|------------------|-----------|-----------------------|--------|-----------------|--------------------------|------|-----------|------------|-----------------|--------|---------------------------|-----------------|---------------------------|------------------|----------|
|        | #  | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $\alpha_{\mathrm{i}}$ | βi     | c <sub>i1</sub> | ε <sub>s de prueba</sub> | a    | b         | С          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | ε <sub>si</sub> | <b>f</b> si<br>(tracción) | $\mathbf{M_{i}}$ | фі       |
|        |    |                  |           |                       |        | (cm)            |                          |      |           |            | (cm)            | (m)    | (cm)                      |                 | МРа                       | KN-m             | (rad/cm) |
|        | 1  | 0.0000           | 0.000     | 0.0000                | 0.6667 | 0.00            | 0.00000                  | 0    | 0         | 0          | 0.00            | 0.00   | 0.00                      | 0.00000         | 0                         | 0.00             | 0.000000 |
|        | 2  | 0.0002           | 0.075     | 0.1090                | 0.6709 | 245.86          | -0.00013                 | 140  | 24570     | -9582300   | 18.82           | -36.39 | 18.82                     | 0.00016         | 32                        | 21.21            | 0.000008 |
|        | 3  | 0.0002           | 0.100     | 0.1438                | 0.6724 | 93.37           | -0.00012                 | 368  | 32760     | -12776400  | 14.70           | -23.59 | 14.70                     | 0.00033         | 66                        | 23.63            | 0.000014 |
| RAMA   | 4  | 0.0004           | 0.200     | 0.2751                | 0.6786 | 32.58           | 0.00008                  | 1056 | 65520     | -25552800  | 12.76           | -18.97 | 12.76                     | 0.00082         | 164                       | 48.33            | 0.000031 |
| ₹      | 5  | 0.0006           | 0.300     | 0.3941                | 0.6852 | 21.22           | 0.00050                  | 1621 | 98280     | -38329200  | 12.64           | -18.71 | 12.64                     | 0.00125         | 250                       | 72.02            | 0.000047 |
| ⋖      | 6  | 0.0008           | 0.400     | 0.5007                | 0.6923 | 16.20           | 0.00113                  | 2124 | 131040    | -51105600  | 12.73           | -18.90 | 12.73                     | 0.00165         | 330                       | 94.25            | 0.000063 |
| 出出     | 7  | 0.0010           | 0.500     | 0.5952                | 0.7000 | 13.35           | 0.00192                  | 2577 | 163800    | -63882000  | 12.88           | -19.24 | 12.88                     | 0.00203         | 405                       | 115.09           | 0.000078 |
| PRIMER | 8  | 0.0012           | 0.600     | 0.6776                | 0.7083 | 11.53           | 0.00286                  | 2984 | 196560    | -76658400  | 13.07           | -19.66 | 11.53                     | 0.00286         | 420                       | 120.48           | 0.000104 |
| PR     | 9  | 0.0014           | 0.700     | 0.7481                | 0.7174 | 10.28           | 0.00391                  | 3347 | 229320    | -89434800  | 13.28           | -20.13 | 10.28                     | 0.00391         | 420                       | 121.72           | 0.000136 |
|        | 10 | 0.0016           | 0.800     | 0.8067                | 0.7273 | 9.38            | 0.00505                  | 3666 | 262080    | -102211200 | 13.50           | -20.65 | 9.38                      | 0.00505         | 420                       | 122.59           | 0.000171 |
|        | 11 | 0.0018           | 0.900     | 0.8535                | 0.7381 | 8.73            | 0.00625                  | 3942 | 294840    | -114987600 | 13.74           | -21.22 | 8.73                      | 0.00625         | 420                       | 123.21           | 0.000206 |
|        | 12 | 0.0020           | 1.000     | 0.8889                | 0.7500 | 8.24            | 0.00747                  | 4176 | 327600    | -127764000 | 14.00           | -21.85 | 8.24                      | 0.00747         | 420                       | 123.63           | 0.000243 |
|        | 13 | 0.0022           | 1.100     | 0.9126                | 0.7633 | 7.88            | 0.00869                  | 4367 | 360360    | -140540400 | 14.28           | -22.53 | 7.88                      | 0.00869         | 420                       | 123.90           | 0.000279 |
| _      | 14 | 0.0024           | 1.200     | 0.9257                | 0.7778 | 7.62            | 0.00989                  | 4516 | 393120    | -153316800 | 14.58           | -23.29 | 7.62                      | 0.00989         | 420                       | 124.04           | 0.000315 |
| M/     | 15 | 0.0026           | 1.300     | 0.9325                | 0.7921 | 7.42            | 0.01106                  | 4635 | 425880    | -166093200 | 14.89           | -24.07 | 7.42                      | 0.01106         | 420                       | 124.11           | 0.000350 |
| RA     | 16 | 0.0028           | 1.400     | 0.9350                | 0.8060 | 7.27            | 0.01222                  | 4730 | 458640    | -178869600 | 15.19           | -24.89 | 7.27                      | 0.01222         | 420                       | 124.13           | 0.000385 |
| A      | 17 | 0.0030           | 1.500     | 0.9346                | 0.8191 | 7.16            | 0.01335                  | 4807 | 491400    | -191646000 | 15.50           | -25.72 | 7.16                      | 0.01335         | 420                       | 124.12           | 0.000419 |
| SEGUND | 18 | 0.0032           | 1.600     | 0.9321                | 0.8315 | 7.07            | 0.01446                  | 4867 | 524160    | -204422400 | 15.80           | -26.57 | 7.07                      | 0.01446         | 420                       | 124.09           | 0.000453 |
| 30     | 19 | 0.0034           | 1.700     | 0.9281                | 0.8431 | 7.00            | 0.01555                  | 4916 | 556920    | -217198800 | 16.11           | -27.44 | 7.00                      | 0.01555         | 420                       | 124.05           | 0.000486 |
| SE     | 20 | 0.0036           | 1.800     | 0.9230                | 0.8541 | 6.94            | 0.01662                  | 4953 | 589680    | -229975200 | 16.40           | -28.31 | 6.94                      | 0.01662         | 420                       | 123.99           | 0.000518 |
|        | 21 | 0.0038           | 1.900     | 0.9170                | 0.8645 | 6.90            | 0.01766                  | 4982 | 622440    | -242751600 | 16.69           | -29.19 | 6.90                      | 0.01766         | 420                       | 123.92           | 0.000550 |
|        | 22 | 0.0040           | 2.000     | 0.9104                | 0.8744 | 6.88            | 0.01869                  | 5003 | 655200    | -255528000 | 16.98           | -30.08 | 6.88                      | 0.01869         | 420                       | 123.85           | 0.000582 |

Tabla 10. Cálculo con el modelo de Rüsch (Sección 2)

|         |             |                  | MODELO DE RÜSCH |                  |        |                 |                          |                                         |        |            |                 |        |                           |                    |                               |                  |          |
|---------|-------------|------------------|-----------------|------------------|--------|-----------------|--------------------------|-----------------------------------------|--------|------------|-----------------|--------|---------------------------|--------------------|-------------------------------|------------------|----------|
|         | #           | ε' <sub>ci</sub> | Ω=ε'ci/ε0       | $\alpha_{\rm i}$ | βi     | c <sub>i1</sub> | <sup>E</sup> s de prueba | а                                       | b      | С          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{ m si}$ | f <sub>si</sub><br>(tracción) | $\mathbf{M_{i}}$ | фі       |
|         | *********** |                  |                 |                  |        | (cm)            |                          | *************************************** |        |            | (cm)            | (m)    | (cm)                      |                    | MPa                           | KN-m             | (rad/cm) |
|         | 1           | 0.0000           | 0.000           | 0.0000           | 0.6667 | 0.00            | 0.00000                  | 0                                       | 0      | 0          | 0.00            | 0.00   | 0.00                      | 0.00000            | 0                             | 0.00             | 0.000000 |
|         | 2           | 0.0002           | 0.075           | 0.1090           | 0.6709 | 245.86          | -0.00013                 | 140                                     | 24570  | -9582300   | 18.82           | -36.39 | 18.82                     | 0.00016            | 32                            | 21.21            | 0.000008 |
|         | 3           | 0.0002           | 0.100           | 0.1438           | 0.6724 | 93.37           | -0.00012                 | 368                                     | 32760  | -12776400  | 14.70           | -23.59 | 14.70                     | 0.00033            | 66                            | 23.63            | 0.000014 |
| AMA     | 4           | 0.0004           | 0.200           | 0.2751           | 0.6786 | 32.58           | 0.00008                  | 1056                                    | 65520  | -25552800  | 12.76           | -18.97 | 12.76                     | 0.00082            | 164                           | 48.33            | 0.000031 |
| RAI     | 5           | 0.0006           | 0.300           | 0.3941           | 0.6852 | 21.22           | 0.00050                  | 1621                                    | 98280  | -38329200  | 12.64           | -18.71 | 12.64                     | 0.00125            | 250                           | 72.02            | 0.000047 |
| _       | 6           | 0.0008           | 0.400           | 0.5007           | 0.6923 | 16.20           | 0.00113                  | 2124                                    | 131040 | -51105600  | 12.73           | -18.90 | 12.73                     | 0.00165            | 330                           | 94.25            | 0.000063 |
| PRIMER/ | 7           | 0.0010           | 0.500           | 0.5952           | 0.7000 | 13.35           | 0.00192                  | 2577                                    | 163800 | -63882000  | 12.88           | -19.24 | 12.88                     | 0.00203            | 405                           | 115.09           | 0.000078 |
| II.     | 8           | 0.0012           | 0.600           | 0.6776           | 0.7083 | 11.53           | 0.00286                  | 2984                                    | 196560 | -76658400  | 13.07           | -19.66 | 11.53                     | 0.00286            | 420                           | 120.48           | 0.000104 |
| PR      | 9           | 0.0014           | 0.700           | 0.7481           | 0.7174 | 10.28           | 0.00391                  | 3347                                    | 229320 | -89434800  | 13.28           | -20.13 | 10.28                     | 0.00391            | 420                           | 121.72           | 0.000136 |
|         | 10          | 0.0016           | 0.800           | 0.8067           | 0.7273 | 9.38            | 0.00505                  | 3666                                    | 262080 | -102211200 | 13.50           | -20.65 | 9.38                      | 0.00505            | 420                           | 122.59           | 0.000171 |
|         | 11          | 0.0018           | 0.900           | 0.8535           | 0.7381 | 8.73            | 0.00625                  | 3942                                    | 294840 | -114987600 | 13.74           | -21.22 | 8.73                      | 0.00625            | 420                           | 123.21           | 0.000206 |
|         | 12          | 0.0020           | 1.000           | 0.8889           | 0.7500 | 8.24            | 0.00747                  | 4176                                    | 327600 | -127764000 | 14.00           | -21.85 | 8.24                      | 0.00747            | 420                           | 123.63           | 0.000243 |
|         | 13          | 0.0022           | 1.100           | 0.9136           | 0.7628 | 7.87            | 0.00870                  | 4369                                    | 360360 | -140540400 | 14.28           | -22.53 | 7.87                      | 0.00870            | 420                           | 123.91           | 0.000279 |
| AMA     | 14          | 0.0024           | 1.200           | 0.9311           | 0.7756 | 7.59            | 0.00993                  | 4530                                    | 393120 | -153316800 | 14.56           | -23.24 | 7.59                      | 0.00993            | 420                           | 124.10           | 0.000316 |
| RA]     | 15          | 0.0026           | 1.300           | 0.9439           | 0.7878 | 7.37            | 0.01115                  | 4666                                    | 425880 | -166093200 | 14.85           | -23.97 | 7.37                      | 0.01115            | 420                           | 124.23           | 0.000353 |
| A       | 16          | 0.0028           | 1.400           | 0.9534           | 0.7991 | 7.19            | 0.01238                  | 4783                                    | 458640 | -178869600 | 15.13           | -24.72 | 7.19                      | 0.01238            | 420                           | 124.32           | 0.000389 |
| ND      | 17          | 0.0030           | 1.500           | 0.9608           | 0.8095 | 7.04            | 0.01361                  | 4884                                    | 491400 | -191646000 | 15.41           | -25.47 | 7.04                      | 0.01361            | 420                           | 124.40           | 0.000426 |
| SEGUND  | 18          | 0.0032           | 1.600           | 0.9665           | 0.8191 | 6.92            | 0.01484                  | 4972                                    | 524160 | -204422400 | 15.68           | -26.22 | 6.92                      | 0.01484            | 420                           | 124.45           | 0.000463 |
| SE      | 19          | 0.0034           | 1.700           | 0.9711           | 0.8278 | 6.81            | 0.01607                  | 5051                                    | 556920 | -217198800 | 15.94           | -26.97 | 6.81                      | 0.01607            | 420                           | 124.49           | 0.000499 |
|         | 20          | 0.0035           | 1.750           | 0.9731           | 0.8319 | 6.76            | 0.01668                  | 5086                                    | 573300 | -223587000 | 16.07           | -27.35 | 6.76                      | 0.01668            | 420                           | 124.51           | 0.000518 |

Tabla 11. Cálculo con el modelo de Whitney (Sección 2)

|              |    | MODELO DE WHITNEY (ACI) |           |         |      |                 |                          |      |        |            |                 |        |                           |                 |                               |                  |          |
|--------------|----|-------------------------|-----------|---------|------|-----------------|--------------------------|------|--------|------------|-----------------|--------|---------------------------|-----------------|-------------------------------|------------------|----------|
|              | #  | ε' <sub>ci</sub>        | Ω=ε'ci/ε0 | $a_{i}$ | βi   | c <sub>i1</sub> | ε <sub>s de prueba</sub> | a    | b      | С          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | ε <sub>si</sub> | f <sub>si</sub><br>(tracción) | $\mathbf{M_{i}}$ | Фі       |
|              |    |                         |           |         |      | (cm)            |                          |      |        |            | (cm)            | (m)    | (cm)                      |                 | МРа                           | KN-m             | (rad/cm) |
|              | 4  | 0.0005                  | 0.225     | 0.85    | 0.85 | 7.74            | 0.00182                  | 4445 | 73710  | -28746900  | 7.26            | -8.91  | 7.26                      | 0.00197         | 394                           | 0.00             | 0.000000 |
|              | 5  | 0.0005                  | 0.225     | 0.85    | 0.85 | 7.74            | 0.00182                  | 4445 | 73710  | -28746900  | 7.26            | -8.91  | 7.26                      | 0.00197         | 394                           | 116.24           | 0.000062 |
| ¥            | 6  | 0.0006                  | 0.300     | 0.85    | 0.85 | 7.69            | 0.00244                  | 4472 | 98280  | -38329200  | 8.22            | -10.42 | 7.69                      | 0.00244         | 420                           | 123.23           | 0.000078 |
| RAM          | 7  | 0.0008                  | 0.400     | 0.85    | 0.85 | 7.66            | 0.00327                  | 4492 | 131040 | -51105600  | 9.31            | -12.22 | 7.66                      | 0.00327         | 420                           | 123.19           | 0.000104 |
| - 4          | 8  | 0.0010                  | 0.500     | 0.85    | 0.85 | 7.64            | 0.00411                  | 4504 | 163800 | -63882000  | 10.23           | -13.87 | 7.64                      | 0.00411         | 420                           | 123.17           | 0.000131 |
| PRIMERA      | 9  | 0.0012                  | 0.600     | 0.85    | 0.85 | 7.62            | 0.00494                  | 4512 | 196560 | -76658400  | 11.04           | -15.39 | 7.62                      | 0.00494         | 420                           | 123.15           | 0.000157 |
| $\mathbb{Z}$ | 10 | 0.0014                  | 0.700     | 0.85    | 0.85 | 7.61            | 0.00577                  | 4517 | 229320 | -89434800  | 11.76           | -16.84 | 7.61                      | 0.00577         | 420                           | 123.14           | 0.000184 |
| PR           | 11 | 0.0016                  | 0.800     | 0.85    | 0.85 | 7.61            | 0.00660                  | 4522 | 262080 | -102211200 | 12.41           | -18.21 | 7.61                      | 0.00660         | 420                           | 123.14           | 0.000210 |
|              | 12 | 0.0018                  | 0.900     | 0.85    | 0.85 | 7.60            | 0.00743                  | 4525 | 294840 | -114987600 | 13.01           | -19.53 | 7.60                      | 0.00743         | 420                           | 123.13           | 0.000237 |
|              | 13 | 0.0020                  | 1.000     | 0.85    | 0.85 | 7.60            | 0.00827                  | 4528 | 327600 | -127764000 | 13.57           | -20.80 | 7.60                      | 0.00827         | 420                           | 123.13           | 0.000263 |
| MA           | 14 | 0.0022                  | 1.100     | 0.85    | 0.85 | 7.59            | 0.00910                  | 4530 | 360360 | -140540400 | 14.08           | -22.04 | 7.59                      | 0.00910         | 420                           | 123.13           | 0.000290 |
| ΑΨ           | 15 | 0.0024                  | 1.200     | 0.85    | 0.85 | 7.59            | 0.00993                  | 4532 | 393120 | -153316800 | 14.56           | -23.24 | 7.59                      | 0.00993         | 420                           | 123.13           | 0.000316 |
| - R          | 16 | 0.0026                  | 1.300     | 0.85    | 0.85 | 7.59            | 0.01076                  | 4533 | 425880 | -166093200 | 15.01           | -24.41 | 7.59                      | 0.01076         | 420                           | 123.12           | 0.000343 |
| DA           | 17 | 0.0028                  | 1.400     | 0.85    | 0.85 | 7.59            | 0.01160                  | 4535 | 458640 | -178869600 | 15.44           | -25.55 | 7.59                      | 0.01160         | 420                           | 123.12           | 0.000369 |
| 2]           | 18 | 0.0030                  | 1.500     | 0.85    | 0.85 | 7.58            | 0.01243                  | 4536 | 491400 | -191646000 | 15.84           | -26.67 | 7.58                      | 0.01243         | 420                           | 123.12           | 0.000396 |

Tabla 12. Cálculo con el modelo de Mander (Sección 2)

|    | MODELO DE MANDER (SAP 2000) |            |                 |                  |                        |                     |                  |                         |            |           |         |         |
|----|-----------------------------|------------|-----------------|------------------|------------------------|---------------------|------------------|-------------------------|------------|-----------|---------|---------|
| #  | Deformación<br>Concreto     | Eje Neutro | Defor.<br>Acero | Defor.<br>Tendón | Compresión<br>Concreto | Compresión<br>Acero | Tensión<br>Acero | Fuerza Pre-<br>esfuerzo | Fuerza Red | Curvatura | Momento | Momento |
|    |                             | (cm)       |                 |                  | (KN/cm2)               | (KN/cm2)            | (KN/cm2)         | (KN)                    | (KN)       | (rad/cm)  | (KN-cm) | (KN-m)  |
| 1  | 0.0000                      | 0.00       | 0.0000          | 0.00             | 0.00                   | 0.00                | 0.00             | 0.00                    | 0.00       | 0.000000  | 0       | 0.00    |
| 2  | -0.0003                     | 10.25      | 0.0007          | 0.00             | -104.05                | -15.68              | 119.60           | 0.00                    | -0.14      | 0.000027  | 4326    | 43.26   |
| 3  | -0.0008                     | 9.92       | 0.0018          | 0.00             | -254.66                | -40.94              | 295.53           | 0.00                    | -0.07      | 0.000067  | 10617   | 106.17  |
| 4  | -0.0012                     | 12.26      | 0.0036          | 0.00             | -286.56                | -51.05              | 337.54           | 0.00                    | -0.07      | 0.000121  | 12299   | 122.99  |
| 5  | -0.0016                     | 14.04      | 0.0059          | 0.00             | -284.99                | -52.66              | 337.54           | 0.00                    | -0.11      | 0.000187  | 12434   | 124.34  |
| 6  | -0.0020                     | 15.09      | 0.0087          | 0.00             | -285.11                | -52.47              | 337.54           | 0.00                    | -0.05      | 0.000268  | 12505   | 125.05  |
| 7  | -0.0025                     | 15.65      | 0.0120          | 0.00             | -291.83                | -54.73              | 346.54           | 0.00                    | -0.01      | 0.000362  | 12859   | 128.59  |
| 8  | -0.0031                     | 15.90      | 0.0157          | 0.00             | -301.65                | -61.45              | 363.11           | 0.00                    | 0.00       | 0.000469  | 13452   | 134.52  |
| 9  | -0.0038                     | 16.01      | 0.0198          | 0.00             | -309.62                | -72.01              | 381.58           | 0.00                    | -0.05      | 0.000589  | 14091   | 140.91  |
| 10 | -0.0047                     | 15.98      | 0.0242          | 0.00             | -311.55                | -90.21              | 401.73           | 0.00                    | -0.03      | 0.000723  | 14741   | 147.41  |
| 11 | -0.0062                     | 15.39      | 0.0287          | 0.00             | -265.16                | -149.68             | 414.67           | 0.00                    | -0.18      | 0.000871  | 14789   | 147.89  |
| 12 | -0.0087                     | 14.06      | 0.0326          | 0.00             | -253.37                | -168.77             | 422.00           | 0.00                    | -0.14      | 0.001031  | 14610   | 146.10  |
| 13 | -0.0104                     | 13.88      | 0.0379          | 0.00             | -263.11                | -168.77             | 431.86           | 0.00                    | -0.02      | 0.001205  | 14891   | 148.91  |
| 14 | -0.0123                     | 13.69      | 0.0435          | 0.00             | -273.02                | -168.77             | 441.73           | 0.00                    | -0.06      | 0.001393  | 15180   | 151.80  |
| 15 | -0.0143                     | 13.52      | 0.0495          | 0.00             | -281.59                | -168.77             | 450.31           | 0.00                    | -0.04      | 0.001594  | 15428   | 154.28  |
| 16 | -0.0166                     | 13.31      | 0.0558          | 0.00             | -290.59                | -168.77             | 459.32           | 0.00                    | -0.04      | 0.001808  | 15686   | 156.86  |
| 17 | -0.0191                     | 13.10      | 0.0623          | 0.00             | -299.06                | -168.77             | 467.78           | 0.00                    | -0.05      | 0.002036  | 15924   | 159.24  |
| 18 | -0.0219                     | 12.89      | 0.0693          | 0.00             | -306.24                | -170.05             | 476.13           | 0.00                    | -0.15      | 0.002277  | 16162   | 161.62  |
| 19 | -0.0248                     | 12.72      | 0.0766          | 0.00             | -310.91                | -173.69             | 484.59           | 0.00                    | -0.02      | 0.002531  | 16409   | 164.09  |
| 20 | -0.0279                     | 12.54      | 0.0842          | 0.00             | -315.01                | -177.70             | 492.70           | 0.00                    | -0.01      | 0.002799  | 16646   | 166.46  |

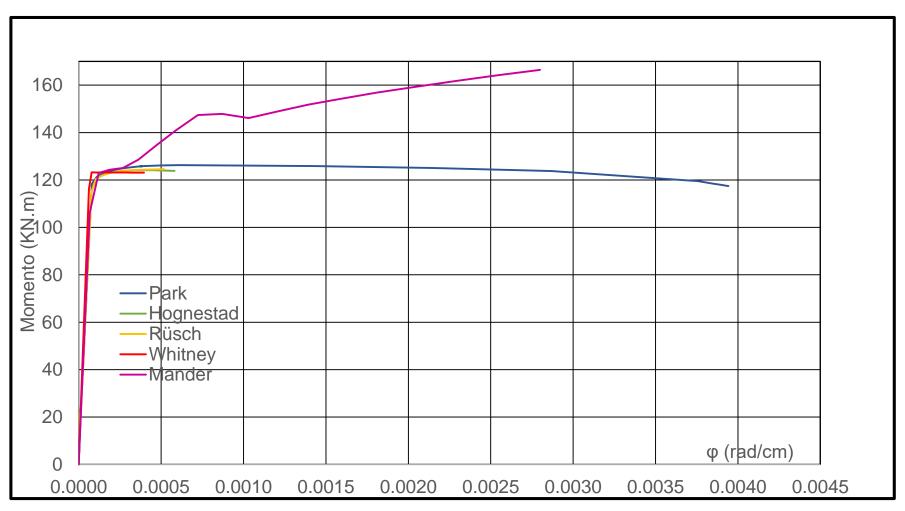



Figura 22. Diagramas de momento-curvatura (Sección 2)

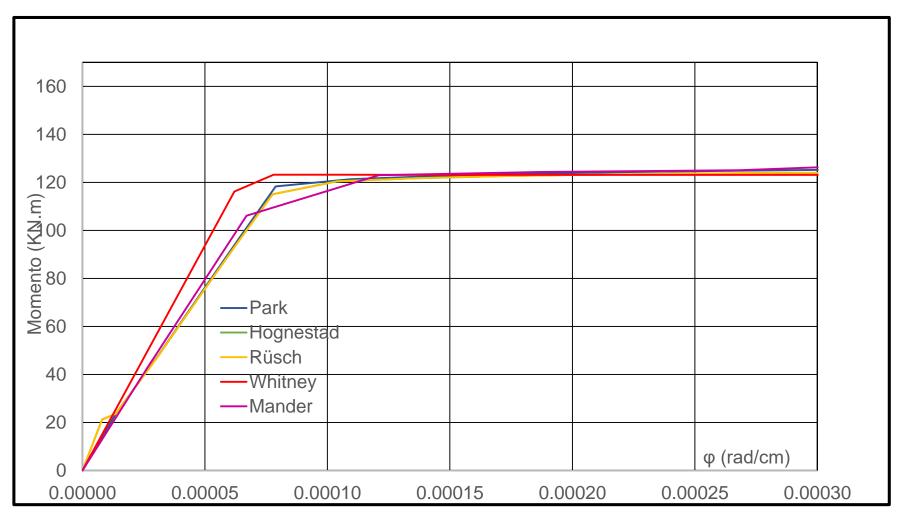



Figura 23. Diagramas de momento-curvatura [ampliados en x] (Sección 2)

## • Sección 3 (Viga de 35 cm x 50 cm)

Tabla 13. Cálculo con el modelo de Park (Sección 3)

|                                                                                                                                                                                                                                                                |    |                  |                 |        |                 |                          |      | MOD     | ELO DE PARK |                 |         |                           |                    |                           |                  |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------|-----------------|--------|-----------------|--------------------------|------|---------|-------------|-----------------|---------|---------------------------|--------------------|---------------------------|------------------|----------|
|                                                                                                                                                                                                                                                                | #  | ε' <sub>ci</sub> | $\alpha_{ m i}$ | βi     | c <sub>i1</sub> | ε <sub>s de prueba</sub> | а    | b       | С           | c <sub>i2</sub> | x2      | c <sub>i definitivo</sub> | $\epsilon_{ m si}$ | <b>f</b> si<br>(tracción) | $\mathbf{M_{i}}$ | фi       |
|                                                                                                                                                                                                                                                                |    |                  |                 |        | (cm)            |                          |      |         |             | (cm)            | (m)     | (cm)                      |                    | MPa                       | KN-m             | (rad/cm) |
|                                                                                                                                                                                                                                                                | 1  | 0.0000           | 0.0000          | 0.6667 | 0.00            | 0.00000                  | 0    | 0       | 0           | 0.000           | 0.000   | 0.000                     | 0.00000            | 0                         | 0.00             | 0.00000  |
|                                                                                                                                                                                                                                                                | 3  | 0.0002           | 0.1450          | 0.6712 | 104.12          | -0.00012                 | 435  | 43120   | -18972800   | 16.51           | -26.43  | 16.51                     | 0.00033            | 67                        | 35.25            | 0.000012 |
| W                                                                                                                                                                                                                                                              | 4  | 0.0004           | 0.2802          | 0.6760 | 36.17           | 0.00009                  | 1252 | 86240   | -37945600   | 14.30           | -21.19  | 14.30                     | 0.00083            | 166                       | 72.50            | 0.000028 |
| PARK                                                                                                                                                                                                                                                           | 5  | 0.0006           | 0.4055          | 0.6811 | 23.38           | 0.00053                  | 1936 | 129360  | -56918400   | 14.13           | -20.81  | 14.13                     | 0.00127            | 254                       | 108.63           | 0.000042 |
| P4                                                                                                                                                                                                                                                             | 6  | 0.0008           | 0.5210          | 0.6864 | 17.70           | 0.00119                  | 2558 | 172480  | -75891200   | 14.18           | -20.92  | 14.18                     | 0.00168            | 336                       | 142.99           | 0.000056 |
| RAMA                                                                                                                                                                                                                                                           | 7  | 0.0010           | 0.6267          | 0.6921 | 14.46           | 0.00204                  | 3132 | 215600  | -94864000   | 14.30           | -21.18  | 14.30                     | 0.00208            | 415                       | 175.71           | 0.000070 |
| A                                                                                                                                                                                                                                                              | 8  | 0.0012           | 0.7227          | 0.6982 | 12.36           | 0.00307                  | 3662 | 258720  | -113836800  | 14.45           | -21.51  | 12.36                     | 0.00307            | 420                       | 180.18           | 0.000097 |
|                                                                                                                                                                                                                                                                | 9  | 0.0014           | 0.8091          | 0.7046 | 10.91           | 0.00425                  | 4150 | 301840  | -132809600  | 14.62           | -21.89  | 10.91                     | 0.00425            | 420                       | 182.15           | 0.000128 |
| PRIMERA                                                                                                                                                                                                                                                        | 10 | 0.0016           | 0.8860          | 0.7115 | 9.85            | 0.00555                  | 4598 | 344960  | -151782400  | 14.80           | -22.30  | 9.85                      | 0.00555            | 420                       | 183.59           | 0.000162 |
| $\mathbb{Z}$                                                                                                                                                                                                                                                   | 11 | 0.0018           | 0.9533          | 0.7189 | 9.04            | 0.00696                  | 5006 | 388080  | -170755200  | 15.00           | -22.75  | 9.04                      | 0.00696            | 420                       | 184.67           | 0.000199 |
| FS .                                                                                                                                                                                                                                                           | 12 | 0.0020           | 1.0113          | 0.7268 | 8.43            | 0.00845                  | 5374 | 431200  | -189728000  | 15.20           | -23.23  | 8.43                      | 0.00845            | 420                       | 185.49           | 0.000237 |
|                                                                                                                                                                                                                                                                | 13 | 0.0022           | 1.0599          | 0.7352 | 7.94            | 0.00999                  | 5702 | 474320  | -208700800  | 15.42           | -23.74  | 7.94                      | 0.00999            | 420                       | 186.11           | 0.000277 |
|                                                                                                                                                                                                                                                                | 14 | 0.0024           | 1.0994          | 0.7444 | 7.56            | 0.01157                  | 5992 | 517440  | -227673600  | 15.65           | -24.28  | 7.56                      | 0.01157            | 420                       | 186.57           | 0.000318 |
|                                                                                                                                                                                                                                                                | 15 | 0.0025           | 1.1180          | 0.7500 | 7.37            | 0.01250                  | 6141 | 542340  | -238629778  | 15.79           | -24.62  | 7.37                      | 0.01250            | 420                       | 186.77           | 0.000341 |
| </th <th>16</th> <th>0.0024</th> <th>1.1180</th> <th>0.7500</th> <th>7.37</th> <th>0.01172</th> <th>6139</th> <th>508700</th> <th>-223827930</th> <th>15.40</th> <th>-23.68</th> <th>7.37</th> <th>0.01172</th> <th>420</th> <th>186.78</th> <th>0.000320</th> | 16 | 0.0024           | 1.1180          | 0.7500 | 7.37            | 0.01172                  | 6139 | 508700  | -223827930  | 15.40           | -23.68  | 7.37                      | 0.01172            | 420                       | 186.78           | 0.000320 |
| MA                                                                                                                                                                                                                                                             | 17 | 0.0028           | 1.1510          | 0.7650 | 7.02            | 0.01476                  | 6452 | 603680  | -265619200  | 16.14           | -25.50  | 7.02                      | 0.01476            | 420                       | 187.12           | 0.000399 |
| RA                                                                                                                                                                                                                                                             | 18 | 0.0030           | 1.1659          | 0.7759 | 6.83            | 0.01633                  | 6630 | 646800  | -284592000  | 16.41           | -26.16  | 6.83                      | 0.01633            | 420                       | 187.27           | 0.000439 |
| A(                                                                                                                                                                                                                                                             | 19 | 0.0035           | 1.1857          | 0.8018 | 6.494           | 0.02021                  | 6972 | 754600  | -332024000  | 17.07           | -27.90  | 6.49                      | 0.02021            | 420                       | 187.47           | 0.000539 |
| Ħ                                                                                                                                                                                                                                                              | 20 | 0.0075           | 1.1343          | 0.9247 | 5.88            | 0.04863                  | 7701 | 1617000 | -711480000  | 21.66           | -42.65  | 5.88                      | 0.04863            | 420                       | 186.92           | 0.001276 |
| 30                                                                                                                                                                                                                                                             | 21 | 0.0115           | 1.0338          | 0.9879 | 6.04            | 0.07234                  | 7502 | 2479400 | -1090936000 | 25.04           | -58.09  | 6.04                      | 0.07234            | 420                       | 185.73           | 0.001905 |
| SEGUNDA                                                                                                                                                                                                                                                        | 22 | 0.0165           | 0.9045          | 1.0498 | 6.49            | 0.09535                  | 6975 | 3557400 | -1565256000 | 28.30           | -79.30  | 6.49                      | 0.09535            | 420                       | 183.80           | 0.002542 |
| • 1                                                                                                                                                                                                                                                            | 23 | 0.0269           | 0.6420          | 1.1877 | 8.08            | 0.11964                  | 5602 | 5803833 | -2553686536 | 33.30           | -136.90 | 8.08                      | 0.11964            | 420                       | 177.49           | 0.003331 |
| ₹                                                                                                                                                                                                                                                              | 24 | 0.0269           | 0.6420          | 1.1877 | 8.08            | 0.11964                  | 5602 | 5803833 | -2553686536 | 33.30           | -136.90 | 8.08                      | 0.11964            | 420                       | 177.49           | 0.003331 |
| RAMA                                                                                                                                                                                                                                                           | 25 | 0.0279           | 0.6189          | 1.2025 | 8.28            | 0.12043                  | 5468 | 6019433 | -2648550536 | 33.69           | -143.78 | 8.28                      | 0.12043            | 420                       | 176.68           | 0.003372 |
|                                                                                                                                                                                                                                                                | 26 | 0.0289           | 0.5981          | 1.2157 | 8.47            | 0.12123                  | 5343 | 6235033 | -2743414536 | 34.06           | -150.76 | 8.47                      | 0.12123            | 420                       | 175.90           | 0.003413 |
| 3RA                                                                                                                                                                                                                                                            | 27 | 0.0299           | 0.5794          | 1.2277 | 8.66            | 0.12203                  | 5226 | 6450633 | -2838278536 | 34.41           | -157.85 | 8.66                      | 0.12203            | 420                       | 175.14           | 0.003453 |
| 3                                                                                                                                                                                                                                                              | 28 | 0.0309           | 0.5623          | 1.2384 | 8.85            | 0.12282                  | 5117 | 6666233 | -2933142536 | 34.74           | -165.02 | 8.85                      | 0.12282            | 420                       | 174.41           | 0.003494 |

Tabla 14. Cálculo con el modelo de Hognestad (Sección 3)

|         | MODELO DE HOGNESTAD |                  |           |             |                |                 |                          |      |        |            |                 |        |                           |                    |                               |                  |          |
|---------|---------------------|------------------|-----------|-------------|----------------|-----------------|--------------------------|------|--------|------------|-----------------|--------|---------------------------|--------------------|-------------------------------|------------------|----------|
|         | #                   | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $a_{\rm i}$ | β <sub>i</sub> | c <sub>i1</sub> | E <sub>s de prueba</sub> | а    | b      | с          | c <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{ m si}$ | f <sub>si</sub><br>(tracción) | $\mathbf{M_{i}}$ | Фі       |
|         |                     |                  |           |             |                | (cm)            |                          |      |        |            | (cm)            | (m)    | (cm)                      |                    | MPa                           | KN-m             | (rad/cm) |
|         | 1                   | 0.0000           | 0.000     | 0.0000      | 0.6667         | 0.00            | 0.00000                  | 0    | 0      | 0          | 0.00            | 0.00   | 0.00                      | 0.00000            | 0                             | 0.00             | 0.000000 |
|         | 2                   | 0.0002           | 0.075     | 0.1090      | 0.6709         | 277.38          | -0.00013                 | 163  | 32340  | -14229600  | 21.24           | -41.05 | 21.24                     | 0.00016            | 32                            | 31.50            | 0.000007 |
|         | 3                   | 0.0002           | 0.100     | 0.1438      | 0.6724         | 105.34          | -0.00012                 | 430  | 43120  | -18972800  | 16.58           | -26.62 | 16.58                     | 0.00033            | 66                            | 35.09            | 0.000012 |
| RAMA    | 4                   | 0.0004           | 0.200     | 0.2751      | 0.6786         | 36.76           | 0.00008                  | 1232 | 86240  | -37945600  | 14.40           | -21.40 | 14.40                     | 0.00082            | 164                           | 71.77            | 0.000028 |
| [A]     | 5                   | 0.0006           | 0.300     | 0.3941      | 0.6852         | 23.94           | 0.00050                  | 1891 | 129360 | -56918400  | 14.26           | -21.10 | 14.26                     | 0.00125            | 250                           | 106.95           | 0.000042 |
|         | 6                   | 0.0008           | 0.400     | 0.5007      | 0.6923         | 18.27           | 0.00113                  | 2478 | 172480 | -75891200  | 14.36           | -21.32 | 14.36                     | 0.00165            | 330                           | 139.97           | 0.000056 |
| ER      | 7                   | 0.0010           | 0.500     | 0.5952      | 0.7000         | 15.06           | 0.00192                  | 3006 | 215600 | -94864000  | 14.54           | -21.71 | 14.54                     | 0.00203            | 405                           | 170.90           | 0.000069 |
| PRIMERA | 8                   | 0.0012           | 0.600     | 0.6776      | 0.7083         | 13.01           | 0.00286                  | 3481 | 258720 | -113836800 | 14.75           | -22.18 | 13.01                     | 0.00286            | 420                           | 178.91           | 0.000092 |
| PR      | 9                   | 0.0014           | 0.700     | 0.7481      | 0.7174         | 11.60           | 0.00391                  | 3904 | 301840 | -132809600 | 14.98           | -22.71 | 11.60                     | 0.00391            | 420                           | 180.75           | 0.000121 |
|         | 10                  | 0.0016           | 0.800     | 0.8067      | 0.7273         | 10.59           | 0.00505                  | 4277 | 344960 | -151782400 | 15.23           | -23.30 | 10.59                     | 0.00505            | 420                           | 182.05           | 0.000151 |
|         | 11                  | 0.0018           | 0.900     | 0.8535      | 0.7381         | 9.84            | 0.00625                  | 4599 | 388080 | -170755200 | 15.51           | -23.94 | 9.84                      | 0.00625            | 420                           | 182.97           | 0.000183 |
|         | 12                  | 0.0020           | 1.000     | 0.8889      | 0.7500         | 9.29            | 0.00747                  | 4872 | 431200 | -189728000 | 15.80           | -24.65 | 9.29                      | 0.00747            | 420                           | 183.60           | 0.000215 |
|         | 13                  | 0.0022           | 1.100     | 0.9126      | 0.7633         | 8.89            | 0.00869                  | 5094 | 474320 | -208700800 | 16.11           | -25.42 | 8.89                      | 0.00869            | 420                           | 183.99           | 0.000248 |
| _       | 14                  | 0.0024           | 1.200     | 0.9257      | 0.7778         | 8.59            | 0.00989                  | 5269 | 517440 | -227673600 | 16.45           | -26.27 | 8.59                      | 0.00989            | 420                           | 184.19           | 0.000279 |
| M       | 15                  | 0.0026           | 1.300     | 0.9325      | 0.7921         | 8.37            | 0.01106                  | 5408 | 560560 | -246646400 | 16.79           | -27.16 | 8.37                      | 0.01106            | 420                           | 184.30           | 0.000311 |
| RA      | 16                  | 0.0028           | 1.400     | 0.9350      | 0.8060         | 8.20            | 0.01222                  | 5519 | 603680 | -265619200 | 17.14           | -28.08 | 8.20                      | 0.01222            | 420                           | 184.33           | 0.000341 |
| A       | 17                  | 0.0030           | 1.500     | 0.9346      | 0.8191         | 8.07            | 0.01335                  | 5608 | 646800 | -284592000 | 17.49           | -29.02 | 8.07                      | 0.01335            | 420                           | 184.32           | 0.000372 |
| R       | 18                  | 0.0032           | 1.600     | 0.9321      | 0.8315         | 7.97            | 0.01446                  | 5679 | 689920 | -303564800 | 17.83           | -29.98 | 7.97                      | 0.01446            | 420                           | 184.27           | 0.000401 |
| SEGUND  | 19                  | 0.0034           | 1.700     | 0.9281      | 0.8431         | 7.89            | 0.01555                  | 5735 | 733040 | -322537600 | 18.17           | -30.95 | 7.89                      | 0.01555            | 420                           | 184.21           | 0.000431 |
| SE      | 20                  | 0.0036           | 1.800     | 0.9230      | 0.8541         | 7.84            | 0.01662                  | 5779 | 776160 | -341510400 | 18.51           | -31.94 | 7.84                      | 0.01662            | 420                           | 184.12           | 0.000459 |
|         | 21                  | 0.0038           | 1.900     | 0.9170      | 0.8645         | 7.79            | 0.01766                  | 5812 | 819280 | -360483200 | 18.83           | -32.93 | 7.79                      | 0.01766            | 420                           | 184.02           | 0.000488 |
|         | 22                  | 0.0040           | 2.000     | 0.9104      | 0.8744         | 7.76            | 0.01869                  | 5837 | 862400 | -379456000 | 19.16           | -33.93 | 7.76                      | 0.01869            | 420                           | 183.91           | 0.000516 |

Tabla 15. Cálculo con el modelo de Rüsch (Sección 3)

|        |    |                  |           |                       |        |                 |                          | M    | ODELO DE | RÜSCH      |                 |        |                           |                    |                               |         |          |
|--------|----|------------------|-----------|-----------------------|--------|-----------------|--------------------------|------|----------|------------|-----------------|--------|---------------------------|--------------------|-------------------------------|---------|----------|
|        | #  | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $\alpha_{\mathrm{i}}$ | βi     | c <sub>i1</sub> | ε <sub>s de prueba</sub> | a    | b        | С          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{ m si}$ | f <sub>si</sub><br>(tracción) | $M_{i}$ | фі       |
|        |    |                  |           |                       |        | (cm)            |                          |      |          |            | (cm)            | (m)    | (cm)                      |                    | МРа                           | KN-m    | (rad/cm) |
|        | 1  | 0.0000           | 0.000     | 0.0000                | 0.6667 | 0.00            | 0.00000                  | 0    | 0        | 0          | 0.00            | 0.00   | 0.00                      | 0.00000            | 0                             | 0.00    | 0.000000 |
|        | 2  | 0.0002           | 0.075     | 0.1090                | 0.6709 | 277.38          | -0.00013                 | 163  | 32340    | -14229600  | 21.24           | -41.05 | 21.24                     | 0.00016            | 32                            | 31.50   | 0.000007 |
|        | 3  | 0.0002           | 0.100     | 0.1438                | 0.6724 | 105.34          | -0.00012                 | 430  | 43120    | -18972800  | 16.58           | -26.62 | 16.58                     | 0.00033            | 66                            | 35.09   | 0.000012 |
| 4A     | 4  | 0.0004           | 0.200     | 0.2751                | 0.6786 | 36.76           | 0.00008                  | 1232 | 86240    | -37945600  | 14.40           | -21.40 | 14.40                     | 0.00082            | 164                           | 71.77   | 0.000028 |
| RAMA   | 5  | 0.0006           | 0.300     | 0.3941                | 0.6852 | 23.94           | 0.00050                  | 1891 | 129360   | -56918400  | 14.26           | -21.10 | 14.26                     | 0.00125            | 250                           | 106.95  | 0.000042 |
| ⋖      | 6  | 0.0008           | 0.400     | 0.5007                | 0.6923 | 18.27           | 0.00113                  | 2478 | 172480   | -75891200  | 14.36           | -21.32 | 14.36                     | 0.00165            | 330                           | 139.97  | 0.000056 |
| PRIMER | 7  | 0.0010           | 0.500     | 0.5952                | 0.7000 | 15.06           | 0.00192                  | 3006 | 215600   | -94864000  | 14.54           | -21.71 | 14.54                     | 0.00203            | 405                           | 170.90  | 0.000069 |
|        | 8  | 0.0012           | 0.600     | 0.6776                | 0.7083 | 13.01           | 0.00286                  | 3481 | 258720   | -113836800 | 14.75           | -22.18 | 13.01                     | 0.00286            | 420                           | 178.91  | 0.000092 |
| FR     | 9  | 0.0014           | 0.700     | 0.7481                | 0.7174 | 11.60           | 0.00391                  | 3904 | 301840   | -132809600 | 14.98           | -22.71 | 11.60                     | 0.00391            | 420                           | 180.75  | 0.000121 |
|        | 10 | 0.0016           | 0.800     | 0.8067                | 0.7273 | 10.59           | 0.00505                  | 4277 | 344960   | -151782400 | 15.23           | -23.30 | 10.59                     | 0.00505            | 420                           | 182.05  | 0.000151 |
|        | 11 | 0.0018           | 0.900     | 0.8535                | 0.7381 | 9.84            | 0.00625                  | 4599 | 388080   | -170755200 | 15.51           | -23.94 | 9.84                      | 0.00625            | 420                           | 182.97  | 0.000183 |
|        | 12 | 0.0020           | 1.000     | 0.8889                | 0.7500 | 9.29            | 0.00747                  | 4872 | 431200   | -189728000 | 15.80           | -24.65 | 9.29                      | 0.00747            | 420                           | 183.60  | 0.000215 |
|        | 13 | 0.0022           | 1.100     | 0.9136                | 0.7628 | 8.88            | 0.00870                  | 5097 | 474320   | -208700800 | 16.11           | -25.42 | 8.88                      | 0.00870            | 420                           | 184.01  | 0.000248 |
| RAMA   | 14 | 0.0024           | 1.200     | 0.9311                | 0.7756 | 8.57            | 0.00993                  | 5285 | 517440   | -227673600 | 16.43           | -26.22 | 8.57                      | 0.00993            | 420                           | 184.28  | 0.000280 |
| ZA]    | 15 | 0.0026           | 1.300     | 0.9439                | 0.7878 | 8.32            | 0.01115                  | 5444 | 560560   | -246646400 | 16.75           | -27.05 | 8.32                      | 0.01115            | 420                           | 184.48  | 0.000313 |
| A      | 16 | 0.0028           | 1.400     | 0.9534                | 0.7991 | 8.11            | 0.01238                  | 5580 | 603680   | -265619200 | 17.07           | -27.89 | 8.11                      | 0.01238            | 420                           | 184.62  | 0.000345 |
| SEGUND | 17 | 0.0030           | 1.500     | 0.9608                | 0.8095 | 7.95            | 0.01361                  | 5698 | 646800   | -284592000 | 17.38           | -28.73 | 7.95                      | 0.01361            | 420                           | 184.73  | 0.000378 |
| GU     | 18 | 0.0032           | 1.600     | 0.9665                | 0.8191 | 7.80            | 0.01484                  | 5801 | 689920   | -303564800 | 17.69           | -29.58 | 7.80                      | 0.01484            | 420                           | 184.81  | 0.000410 |
| SE     | 19 | 0.0034           | 1.700     | 0.9711                | 0.8278 | 7.68            | 0.01607                  | 5892 | 733040   | -322537600 | 17.99           | -30.43 | 7.68                      | 0.01607            | 420                           | 184.87  | 0.000442 |
|        | 20 | 0.0035           | 1.750     | 0.9731                | 0.8319 | 7.63            | 0.01668                  | 5934 | 754600   | -332024000 | 18.14           | -30.85 | 7.63                      | 0.01668            | 420                           | 184.90  | 0.000459 |

Tabla 16. Cálculo con el modelo de Whitney (Sección 3)

|        |    |                  |           |         |      |                 |                          | MODE | LO DE WH | TNEY (ACI) |                 |        |                           |                    |                           |         |          |
|--------|----|------------------|-----------|---------|------|-----------------|--------------------------|------|----------|------------|-----------------|--------|---------------------------|--------------------|---------------------------|---------|----------|
|        | #  | ε' <sub>ci</sub> | Ω=ε'ci/ε0 | $a_{i}$ | βί   | C <sub>i1</sub> | ε <sub>s de prueba</sub> | a    | b        | С          | C <sub>i2</sub> | x2     | C <sub>i definitivo</sub> | $\epsilon_{ m si}$ | <b>f</b> si<br>(tracción) | $M_{i}$ | фі       |
|        |    |                  |           |         |      | (cm)            |                          |      |          |            | (cm)            | (m)    | (cm)                      |                    | MPa                       | KN-m    | (rad/cm) |
|        | 4  | 0.0005           | 0.225     | 0.85    | 0.85 | 8.73            | 0.00182                  | 5186 | 97020    | -42688800  | 8.19            | -10.06 | 8.19                      | 0.00197            | 394                       | 0.00    | 0.000000 |
|        | 5  | 0.0005           | 0.225     | 0.85    | 0.85 | 8.73            | 0.00182                  | 5186 | 97020    | -42688800  | 8.19            | -10.06 | 8.19                      | 0.00197            | 394                       | 172.61  | 0.000055 |
| AMA    | 6  | 0.0006           | 0.300     | 0.85    | 0.85 | 8.68            | 0.00244                  | 5217 | 129360   | -56918400  | 9.28            | -11.76 | 8.68                      | 0.00244            | 420                       | 183.00  | 0.000069 |
| 8      | 7  | 0.0008           | 0.400     | 0.85    | 0.85 | 8.64            | 0.00327                  | 5240 | 172480   | -75891200  | 10.50           | -13.79 | 8.64                      | 0.00327            | 420                       | 182.93  | 0.000093 |
| AR     | 8  | 0.0010           | 0.500     | 0.85    | 0.85 | 8.62            | 0.00411                  | 5254 | 215600   | -94864000  | 11.54           | -15.64 | 8.62                      | 0.00411            | 420                       | 182.90  | 0.000116 |
| 黑      | 9  | 0.0012           | 0.600     | 0.85    | 0.85 | 8.60            | 0.00494                  | 5264 | 258720   | -113836800 | 12.45           | -17.37 | 8.60                      | 0.00494            | 420                       | 182.88  | 0.000140 |
| PRIMER | 10 | 0.0014           | 0.700     | 0.85    | 0.85 | 8.59            | 0.00577                  | 5270 | 301840   | -132809600 | 13.27           | -18.99 | 8.59                      | 0.00577            | 420                       | 182.87  | 0.000163 |
| PR     | 11 | 0.0016           | 0.800     | 0.85    | 0.85 | 8.58            | 0.00660                  | 5275 | 344960   | -151782400 | 14.01           | -20.54 | 8.58                      | 0.00660            | 420                       | 182.86  | 0.000186 |
|        | 12 | 0.0018           | 0.900     | 0.85    | 0.85 | 8.58            | 0.00743                  | 5279 | 388080   | -170755200 | 14.68           | -22.03 | 8.58                      | 0.00743            | 420                       | 182.85  | 0.000210 |
|        | 13 | 0.0020           | 1.000     | 0.85    | 0.85 | 8.57            | 0.00827                  | 5282 | 431200   | -189728000 | 15.30           | -23.47 | 8.57                      | 0.00827            | 420                       | 182.85  | 0.000233 |
| A      | 14 | 0.0022           | 1.100     | 0.85    | 0.85 | 8.57            | 0.00910                  | 5285 | 474320   | -208700800 | 15.89           | -24.86 | 8.57                      | 0.00910            | 420                       | 182.84  | 0.000257 |
| AMA    | 15 | 0.0024           | 1.200     | 0.85    | 0.85 | 8.56            | 0.00993                  | 5287 | 517440   | -227673600 | 16.43           | -26.21 | 8.56                      | 0.00993            | 420                       | 182.84  | 0.000280 |
| 8      | 16 | 0.0026           | 1.300     | 0.85    | 0.85 | 8.56            | 0.01076                  | 5289 | 560560   | -246646400 | 16.94           | -27.54 | 8.56                      | 0.01076            | 420                       | 182.84  | 0.000304 |
| DA.    | 17 | 0.0028           | 1.400     | 0.85    | 0.85 | 8.56            | 0.01160                  | 5290 | 603680   | -265619200 | 17.42           | -28.83 | 8.56                      | 0.01160            | 420                       | 182.83  | 0.000327 |
| 21     | 18 | 0.0030           | 1.500     | 0.85    | 0.85 | 8.56            | 0.01243                  | 5292 | 646800   | -284592000 | 17.87           | -30.09 | 8.56                      | 0.01243            | 420                       | 182.83  | 0.000351 |

Tabla 17. Cálculo con el modelo de Mander (Sección 3)

|    |                         |            |                 |                  | MOD                    | ELO DE MAN          | NDER (SAF        | P 2000)                 |            |           |         |         |
|----|-------------------------|------------|-----------------|------------------|------------------------|---------------------|------------------|-------------------------|------------|-----------|---------|---------|
| #  | Deformación<br>Concreto | Eje Neutro | Defor.<br>Acero | Defor.<br>Tendón | Compresión<br>Concreto | Compresión<br>Acero | Tensión<br>Acero | Fuerza Pre-<br>esfuerzo | Fuerza Red | Curvatura | Momento | Momento |
|    |                         | (cm)       |                 |                  | (KN/cm2)               | (KN/cm2)            | (KN/cm2)         | (KN)                    | (KN)       | (rad/cm)  | (KN-cm) | (KN-m)  |
| 1  | 0.0000                  | 0.00       | 0.0000          | 0.00             | 0.00                   | 0.00                | 0.00             | 0.00                    | 0.00       | 0.000000  | 0       | 0.00    |
| 2  | -0.0003                 | 10.89      | 0.0007          | 0.00             | -128.26                | -21.92              | 150.07           | 0.00                    | -0.12      | 0.000021  | 6071    | 60.71   |
| 3  | -0.0008                 | 10.60      | 0.0016          | 0.00             | -315.35                | -56.59              | 371.59           | 0.00                    | -0.34      | 0.000054  | 14952   | 149.52  |
| 4  | -0.0012                 | 12.56      | 0.0031          | 0.00             | -396.43                | -80.34              | 476.70           | 0.00                    | -0.06      | 0.000097  | 19357   | 193.57  |
| 5  | -0.0015                 | 14.80      | 0.0052          | 0.00             | -390.06                | -86.75              | 476.70           | 0.00                    | -0.10      | 0.000150  | 19598   | 195.98  |
| 6  | -0.0019                 | 16.16      | 0.0077          | 0.00             | -386.17                | -90.58              | 476.70           | 0.00                    | -0.05      | 0.000215  | 19728   | 197.28  |
| 7  | -0.0023                 | 17.00      | 0.0107          | 0.00             | -386.78                | -94.67              | 481.13           | 0.00                    | -0.32      | 0.000290  | 19979   | 199.79  |
| 8  | -0.0029                 | 17.41      | 0.0140          | 0.00             | -396.95                | -105.51             | 502.29           | 0.00                    | -0.17      | 0.000376  | 20845   | 208.45  |
| 9  | -0.0035                 | 17.62      | 0.0177          | 0.00             | -404.64                | -121.12             | 525.89           | 0.00                    | 0.13       | 0.000473  | 21772   | 217.72  |
| 10 | -0.0042                 | 17.71      | 0.0218          | 0.00             | -409.41                | -142.57             | 551.89           | 0.00                    | -0.09      | 0.000580  | 22778   | 227.78  |
| 11 | -0.0053                 | 17.43      | 0.0261          | 0.00             | -385.07                | -193.61             | 578.76           | 0.00                    | 0.07       | 0.000698  | 23538   | 235.38  |
| 12 | -0.0075                 | 15.93      | 0.0296          | 0.00             | -350.02                | -238.35             | 588.16           | 0.00                    | -0.21      | 0.000827  | 23148   | 231.48  |
| 13 | -0.0092                 | 15.53      | 0.0342          | 0.00             | -362.22                | -238.35             | 600.33           | 0.00                    | -0.25      | 0.000967  | 23454   | 234.54  |
| 14 | -0.0108                 | 15.33      | 0.0393          | 0.00             | -375.46                | -238.35             | 613.80           | 0.00                    | -0.01      | 0.001117  | 23895   | 238.95  |
| 15 | -0.0126                 | 15.12      | 0.0447          | 0.00             | -388.09                | -238.35             | 626.38           | 0.00                    | -0.06      | 0.001278  | 24309   | 243.09  |
| 16 | -0.0146                 | 14.91      | 0.0504          | 0.00             | -399.63                | -238.35             | 637.93           | 0.00                    | -0.05      | 0.001450  | 24681   | 246.81  |
| 17 | -0.0169                 | 14.66      | 0.0564          | 0.00             | -411.67                | -238.35             | 649.97           | 0.00                    | -0.05      | 0.001633  | 25063   | 250.63  |
| 18 | -0.0194                 | 14.40      | 0.0626          | 0.00             | -422.96                | -238.36             | 661.07           | 0.00                    | -0.26      | 0.001826  | 25408   | 254.08  |
| 19 | -0.0219                 | 14.20      | 0.0692          | 0.00             | -429.17                | -243.18             | 672.33           | 0.00                    | -0.02      | 0.002030  | 25776   | 257.76  |
| 20 | -0.0247                 | 14.00      | 0.0760          | 0.00             | -435.08                | -248.55             | 683.62           | 0.00                    | -0.02      | 0.002245  | 26145   | 261.45  |

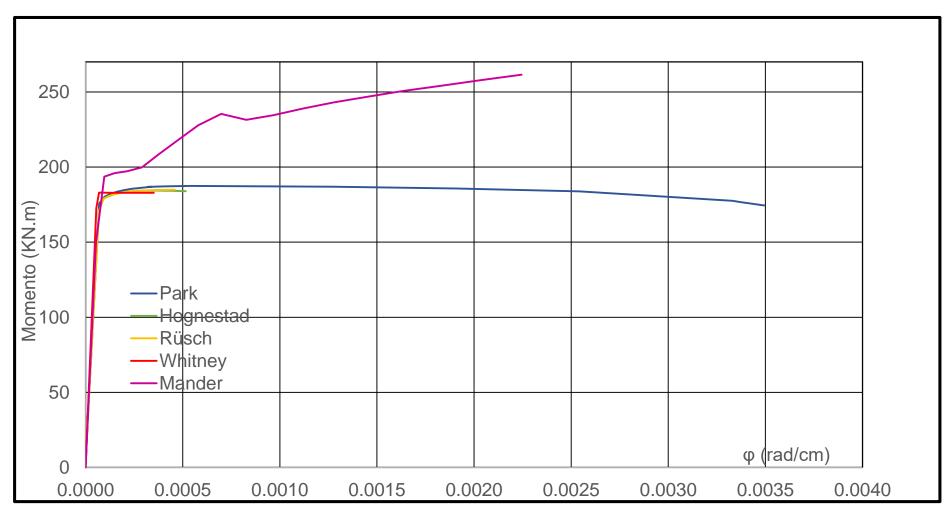



Figura 24. Diagramas de momento-curvatura (Sección 3)

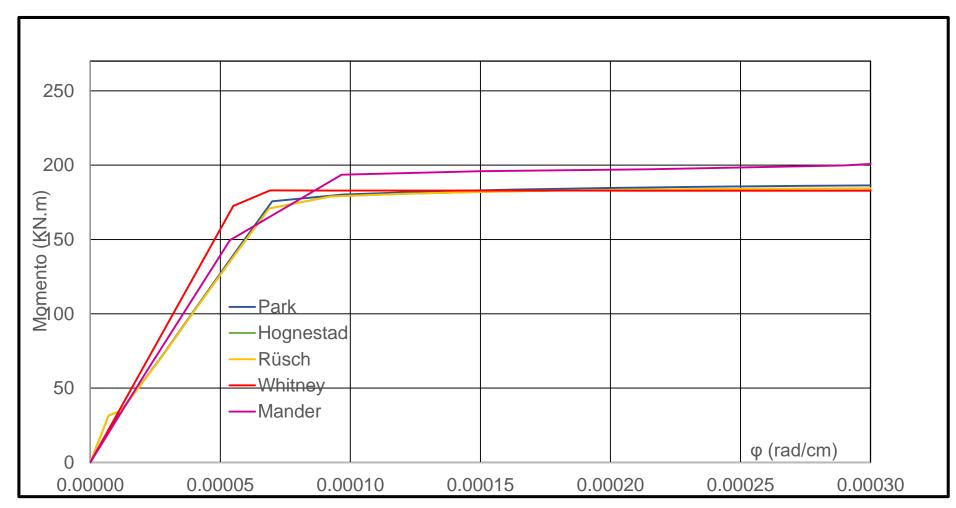



Figura 25. Diagramas de momento-curvatura [ampliados en x] (Sección 3)

# Resumen de Momentos y Curvaturas para las 3 secciones propuestas y sus ductilidades por curvatura

Tabla 18. Resumen de momentos y curvaturas (Sección 1)

| Modelo    | Momento<br>de fluencia<br>My | Curvatura<br>de fluencia<br>фу | Momento<br>último<br>Mu | Curvatura<br>última<br>фи | Ductilidad por<br>curvatura<br>μφ |
|-----------|------------------------------|--------------------------------|-------------------------|---------------------------|-----------------------------------|
|           | KN-m                         | rad/cm                         | KN-m                    | rad/cm                    |                                   |
| Park      | 74.94                        | 0.000091                       | 79.96                   | 0.004522                  | 49.96                             |
| Mander    | 82.54                        | 0.000148                       | 110.13                  | 0.003445                  | 23.28                             |
| Hognestad | 72.89                        | 0.000089                       | 78.62                   | 0.000667                  | 7.50                              |
| Rüsch     | 72.89                        | 0.000089                       | 78.86                   | 0.000594                  | 6.67                              |
| Whitney   | 78.05                        | 0.000089                       | 78.05                   | 0.000454                  | 5.07                              |

Tabla 19. Resumen de momentos y curvaturas (Sección 2)

| Modelo    | Momento<br>de fluencia<br>My | Curvatura<br>de fluencia<br>фу | Momento<br>último<br>Mu | Curvatura<br>última<br>фи | Ductilidad por<br>curvatura μφ |
|-----------|------------------------------|--------------------------------|-------------------------|---------------------------|--------------------------------|
|           | KN-m                         | rad/cm                         | KN-m                    | rad/cm                    |                                |
| Park      | 118.33                       | 0.000079                       | 126.24                  | 0.003942                  | 49.96                          |
| Mander    | 122.99                       | 0.000121                       | 166.46                  | 0.002799                  | 23.13                          |
| Hognestad | 115.09                       | 0.000078                       | 124.13                  | 0.000582                  | 7.50                           |
| Rüsch     | 115.09                       | 0.000078                       | 124.51                  | 0.000518                  | 6.67                           |
| Whitney   | 123.23                       | 0.000078                       | 123.23                  | 0.000396                  | 5.07                           |

Tabla 20. Resumen de momentos y curvaturas (Sección 3)

| Modelo    | Momento<br>de fluencia<br>My | Curvatura<br>de fluencia<br>фу | Momento<br>último<br>Mu | Curvatura<br>última<br>фи | Ductilidad por<br>curvatura μφ |
|-----------|------------------------------|--------------------------------|-------------------------|---------------------------|--------------------------------|
|           | KN-m                         | rad/cm                         | KN-m                    | rad/cm                    |                                |
| Park      | 175.71                       | 0.000070                       | 187.47                  | 0.003494                  | 49.96                          |
| Mander    | 193.57                       | 0.000097                       | 261.45                  | 0.002245                  | 23.22                          |
| Hognestad | 170.90                       | 0.000069                       | 184.33                  | 0.000516                  | 7.50                           |
| Rüsch     | 170.90                       | 0.000069                       | 184.90                  | 0.000459                  | 6.67                           |
| Whitney   | 183.00                       | 0.000069                       | 183.00                  | 0.000351                  | 5.07                           |

## **CAPÍTULO III**

### 3.1. DEFINICIÓN Y SELECCIÓN DE LA MUESTRA

Para el desarrollo de la investigación se planteó entrevistas a expertos conocedores de la temática:

- 1. Wilter Enrique Ruíz Párraga
- 2. William Stalin Alcívar Moreira
- 3. Lincoln Javier García Vinces
- 4. Jorge Luis Palacios Rodríguez.

Todos ellos se desempeñan como docentes de la Facultad de Ciencias Matemáticas, Físicas y Químicas de la Universidad Técnica de Manabí.

#### 3.2. RECOLECCIÓN DE LA INFORMACIÓN

A los informantes se les planteó una serie de interrogantes mismas, que son aporte para el logro de los propósitos de esta investigación.

#### PREGUNTA No. 1:

#### ¿Qué modelos constitutivos para hormigón confinado conoce usted?

Al ser consultado respecto a la pregunta en referencia los informantes manifestaron que los modelos más comunes utilizados para hormigón confinado son:

- Mander
- Kent y Park
- Wu y Zhou
- Park

#### PREGUNTA No. 2:

#### ¿Qué modelos constitutivos para hormigón sin confinamiento conoce usted?

Al ser consultado respecto a la pregunta en referencia los informantes coincidieron en que los modelos más comunes utilizados para hormigón sin confinamiento son:

- Whitney (bloque rectangular del ACI)

- Hognestad

#### PREGUNTA No. 3:

¿Qué modelo constitutivo del acero cree usted que debe usarse para la relación momento-curvatura de un elemento de hormigón armado?

Al ser consultado respecto a la pregunta en referencia los informantes manifestaron que los modelo constitutivo del acero que deben usarse para la relación momento-curvatura son:

- Elasto plástico perfecto (3) (4)
- Trilineal (1) (2)

#### PREGUNTA No. 4:

¿Cree usted que es importante conocer el diagrama momento-curvatura de una sección de hormigón o acero? ¿Por qué?

Al ser consultado respecto a la pregunta en referencia los informantes manifestaron sus criterios sobre la importancia de conocer el diagrama momento-curvatura de una sección de hormigón o acero:

- Permite analizar las deformaciones y esfuerzos del hormigón y el acero (1)
- Ayuda a conocer el verdadero comportamiento de los materiales (2)
- Determina la trabajabilidad de la sección hasta sus puntos críticos (3)
- Permite visualizar de forma rápida cuán dúctil y resistente es un miembro
   (4)

#### PREGUNTA No. 5:

¿Qué modelos constitutivos de los materiales serían apropiados para utilizarlos en el método de momento-curvatura?

Al ser consultado respecto a la pregunta en referencia los informantes manifestaron cuáles son los modelos constitutivos de los materiales que deberían ser utilizados:

- Trilineal para el acero
- Whitney (3) y Mander o Park (2) (4) para el hormigón

#### PREGUNTA No. 6:

¿Cree usted que los coeficientes  $\alpha_1$  y  $\beta_1$ , que se utilizan generalmente, para pasar de un bloque de compresiones irregular a uno regular en una viga son muy conservadores? ¿Por qué?

Al ser consultado respecto a la pregunta en referencia los informantes manifestaron su opinión sobre estos coeficientes:

- (1), (2) y (4) piensan que sí son conservadores estos valores, debido a que no consideran el aporte del confinamiento, y opinan que estos coeficientes deben ser reevaluados.
- (3) opina que no son conservadores, ya que le brindan la seguridad adecuada a las estructuras.

#### 3.2.1. Estadísticas

Todos los informantes conocen aunque sea 1 modelos constitutivo del hormigón confinado, pero solo el 50% de los informantes conoce los más comunes, que son el de Park y el de Mander; el 100% conoce el principal modelo para hormigón sin confinamiento, en este caso el modelo de Whitney.

Acerca de cuál debe ser el modelo del acero que se debe utilizar para realizar el diagrama Momento-Curvatura de una sección de hormigón armado, el 50% opinó que debe ser el elasto plástico perfecto (bilineal), mientras que el otro 50% cree que debe usarse un modelo trilineal.

El 100% de los entrevistados dieron sus opiniones sobre la importancia de conocer los diagramas de Momento-Curvatura de las secciones de hormigón armado, con sus respectivos criterios, pero solo el 75% declaró cuales son los modelos constitutivos que se deben utilizar para el cálculo de dichos diagramas, coincidiendo con el modelo trilineal para el acero y el de Whitney (25%) o uno confinado como Park o Mander (50%) para el hormigón.

El 75% de los informantes coinciden en que los valores de  $\alpha_1$  y  $\beta_1$  propuestos en el modelo constitutivo del hormigón no confinado de Whitney son muy conservadores; el 25% discrepa con esto alegando que son los valores necesarios para aportar seguridad a las estructuras.

#### 3.2.2. Verificación de los Objetivos

El primer objetivo específico hace referencia a "Desarrollar modelos de hormigón sin confinar y confinado para vigas de hormigón armado".

Este objetivo pudo ser verificado mediante un programa computacional en Microsoft Excel. Se definieron 3 secciones de viga (25 cm x 40 cm, 30 cm x 45 cm y 35 cm x 50 cm), cada una de éstas con sus respectivos materiales (hormigón de f'c=21 Mpa y acero de fy= 420 Mpa) y utilizando el método de las Diagramas Rectangulares Equivalentes se definieron 4 diferentes modelos del hormigón, tanto confinado (Park) como sin confinamiento (Hognestad, Rüsch y Whitney). Además por medio del SAP 2000 se desarrolló el modelo de Mander.

El desarrollo de este objetivo corrobora a lo antes descrito por los Ingenieros Yordy Mieles, Emilio Castañeda y Alberto Caneiro, en su artículo científico titulado "Estudio de Alteraciones en el Comportamiento Estructural de Vigas de Hormigón Armado con Nudos Híbridos mediante el Empleo de Gráficos Momento-Curvatura", donde dice textualmente: "Normativas como el ACI, usan el modelo de Whitney [...]; sin embargo, es una propuesta realmente conservadora, pues reemplaza la distribución real de esfuerzos por un rectángulo equivalente que define la intensidad de la compresión mediante el valor ( $\alpha_1 f_c'$ ), y en la profundidad ( $\beta_1 c$ ), sin tomar en cuenta el aporte del confinamiento proporcionado por los estribos.

'Un modelo de hormigón confinado representa de forma aproximada el comportamiento del material de la viga con nudos híbridos. El confinamiento del hormigón mediante el refuerzo transversal mejora su desempeño, permiten mayor resistencia y como consecuencia mayores deformaciones, a la vez que incrementa la ductilidad de un elemento de hormigón" (Mieles, Castañeda y Caneiro 2016).

El segundo objetivo específico se refiere a "Elaborar programas computacionales para diagramas de momentos-curvatura en vigas de hormigón armado".

Este objetivo se verificó con la realización de los diagramas de momentocurvatura por medio del software Microsoft Excel y SAP 2000 para las diferentes secciones propuestas con sus respectivos materiales y con los modelos constitutivos desarrollados en el objetivo anterior.

Este objetivo concuerda con el criterio de muchos expertos en el análisis y diseño de estructuras de hormigón armado, entre ellos Gabriel Vargas Marín y Javier

González Alonso, quienes en su artículo "Procedimiento para obtener gráficas momento-curvatura en vigas de concreto reforzado" mencionan: "El comportamiento de elementos de concreto reforzado sometidos a flexión puede comprenderse de manera más clara mediante el uso de las gráficas que relacionan el momento flexionante resistente en una sección con la curvatura correspondiente. Sin embargo aunque en la mayoría de los textos relacionados con el concreto reforzado se resalta la importancia de estas gráficas, no se presenta el procedimiento para su obtención" (Vargas y González 2005).

El tercer objetivo específico hace referencia a "Determinar un modelo apropiado para la ley de comportamiento del hormigón".

Este objetivo fue verificado luego de cumplir con los dos primeros objetivos específicos. Al definir varios modelos constitutivos para el hormigón y elaborar los diagramas de momento-curvatura con cada uno de estos modelos para todas las secciones propuestas, por medio de los programas computacionales mencionados, se pudo observar y determinar cuáles son los modelos que se ajustan más al verdadero comportamiento del hormigón y el acero.

Este resultado permite verificar lo antes descrito con los criterios del Dr. Roberto Aguiar Falconí en su libro titulado "Análisis Sísmico por Desempeño", donde textualmente dice: "Si se emplea el bloque rectangular de Whitney y el modelo elasto plástico para el hormigón y el acero, respectivamente, los valores de curvatura que se obtengan serán bajos. En cambio si se utiliza un modelo de hormigón confinado como el propuesto por Park y un modelo de acero que contemple endurecimiento posfluencia se encontrarán valores más altos de curvatura y son más cercanos a la realidad" (Aguiar 2003).

El cuarto objetivo específico hace referencia a "Proponer un método de análisis y diseño que se adapte mejor a las condiciones reales del hormigón y el acero".

Este objetivo pudo ser verificado una vez cumplidos los tres primeros objetivos específicos, ya que al determinar cuáles son los modelos apropiados para representar el comportamiento del acero y del hormigón, y después de verificar esto por medio de los diagramas de momento-curvatura en diferentes secciones de viga, se establece así un método de análisis y diseño que permite conocer las condiciones internas reales de los elementos estructurales ante solicitaciones externas.

El cumplimiento de este objetivo concuerda con lo expresado por los Doctores José Hernández Santana y Julio Hernández Caneiro, en su libro "Hormigón Estructural", quienes dijeron: "El estudio del comportamiento de secciones sometidas a flexión, conviene expresarlo preferentemente mediante la relación Momento (M) vs. Curvatura ( $\varphi$ ), donde M representa la acción interior que produce en cada sección la carga externa, mientras  $\varphi$  es la curvatura que experimenta la sección al deformarse para asegurar el equilibrio. De esta forma se puede analizar el comportamiento de la sección aislada sin tener en cuenta otras características del elemento, tales como luz, tipo de carga, condiciones de apoyo, etc." (Hernández Santana y Hernández Caneiro 2013).

La hipótesis manifiesta que "El utilizar diagramas de momento-curvatura basados en modelos constitutivos de hormigón confinado permitirá que el diseño y la construcción de estructuras de hormigón armado sean más precisos".

Una vez verificados los objetivos específicos de la investigación, se pudo comprobar la hipótesis planteada, ya que se demostró que, al utilizar modelos constitutivos del hormigón que consideran el aporte de resistencia a la compresión producida por el confinamiento, se obtienen diagramas momento-curvatura de mayor alcance, tanto en las curvaturas (abscisas) como en los momentos internos (ordenadas), conociéndose un comportamiento más acertado del hormigón armado, pudiendo obtener así diseños más precisos.

Lo citado por el Ingeniero Carlos A. Celi Sánchez en su tesis titulada "Análisis Paramétrico de la Fiabilidad del Modelamiento Sísmico en el Rango No Lineal, en Función al tipo de Modelamiento Empleado" ayuda a comprobar la hipótesis: "Es importante conocer la relación M- $\varphi$  (momento-curvatura), dentro de un análisis estructural no lineal, con el objeto de saber cuál es la capacidad de ductilidad por curvatura de la estructura, además de la máxima capacidad a flexión del elemento M; de esta forma comparar estas capacidades características del diagrama M- $\varphi$  con la demanda que sufrirá la estructura durante la historia de carga" (Celi 2014).

#### 3.3. ANÁLISIS DE LOS DATOS

En base a la información obtenida por medio de las entrevistas se puede indicar que los informantes tienen un nivel medio-alto de conocimientos respecto a los modelos constitutivos del hormigón y el acero y de los diagramas de momentocurvatura, lo que les ha permitido ponerlos en práctica o sugerirlos en las diferentes obras bajo sus responsabilidad, obteniendo resultados altamente positivos para la causa; sin embargo, dentro de las cátedras relacionadas con el hormigón armado no se enseñan los diferentes modelos constitutivos que existen, sus ventajas y desventajas, y cómo utilizarlos para el análisis y diseño de estructuras, debido a que se suele enseñar y utilizar solamente el modelo propuesto por Whitney (ACI), y este no representa el verdadero comportamiento del hormigón.

En este caso, se recomienda que se diversifique el conocimiento, tanto en docentes como estudiantes, acerca de los diversos modelos constitutivos para el hormigón y el acero y el desarrollo de diagramas de momento-curvatura para comprender el comportamiento de diferentes secciones, y de esa manera seleccionar los modelos adecuados a la hora del diseño y el análisis y fortalecer los perfiles profesionales de los estudiantes de la Carrera de Ingeniería Civil.

## CAPÍTULO IV

#### 4.1. CONCLUSIONES

- En este trabajo se han conseguido coeficientes alfa y beta con modelos constitutivos de hormigón confinado y sin confinar, propuestos por varios investigadores. Por medio de Microsoft Excel y SAP 2000 se calcularon esfuerzos y deformaciones para los modelos de Park, Mander, Hognestad, Rüsch y Whitney en 3 diferentes secciones de viga, con un hormigón de *f'c*=21 MPa y acero de *fy*=420 MPa. Se tomó en consideración las ecuaciones y deformaciones mínimas y máximas de cada modelo.
- Se realizó en Excel un programa para calcular los valores de momento flexionante y curvatura para los modelos de Park, Hognestad, Rüsch y Whitney, utilizando el método de los diagramas rectangulares equivalentes; mientras que los valores de momento y curvatura para el modelo de Mander se determinaron por medio del SAP 2000. Adicionalmente se elaboró un programa en Matlab (adjunto en el anexo) que calcula y grafica el diagrama momento-curvatura con la ley constitutiva de Park (1982) y un modelo trilineal del acero.
- Para el rango elástico del comportamiento de las curvas se observan en la Figura 25 comportamientos aproximadamente iguales, hasta curvaturas de 0.0001, que corresponden a deformaciones del hormigón de 0.001 para una ley de hormigón confinado y 0.0008 para hormigón sin confinar.
  - Comparando la ductilidad por curvatura entre los diagramas de hormigón confinado de Park y Whitney (sin confinar) se observa que una viga modelada con hormigón confinado es aproximadamente 10 veces más dúctil que una con hormigón sin confinar. Para el modelo de hormigón confinado de Mander es 4.5 veces más dúctil que el de Whitney (sin confinar).

Un hormigón confinado soporta más deformación antes de entrar en su rango plástico, el modelo de Whitney que se usa en los cálculos académicos resulta

conservador. Se espera que las estructuras incursionen en el rango inelástico durante un evento catastrófico como un sismo, por lo que diseñar estructuras con modelos de hormigón sin confinar da un margen de seguridad mayor. El modelo de Park ha sido observado, por alcanzar deformaciones muy altas, incluso mayores de 0.03. El modelo de Mander toma en cuenta características de la sección como diámetros de varillas, número de ramas y separación de estribos, las cuales no considera el modelo de Park; este primer modelo alcanza valores de deformación de 0.025, curvaturas de 0.0022 (Figura 24) y sus momentos de fluencia y último superan a los que logra el modelo de Park, por lo que se concluye que el modelo más apropiado para usar en análisis de secciones aisladas de hormigón armado es el modelo de Mander.

 Para el análisis de secciones de hormigón como vigas es preferible usar el modelo de Mander (1988) para el hormigón y un modelo trilineal para el acero de refuerzo, pues permite verificar de forma más aproximada que las secciones diseñadas con un método elástico tengan la suficiente reserva de ductilidad por curvatura al momento que accidentalmente irrumpa en el rango inelástico.

#### 4.2. RECOMENDACIONES

Al concluir el trabajo investigativo podemos recomendar que:

- Se usen ecuaciones de leyes constitutivas transformadas por medio de integración y calcular los coeficientes de α<sub>1</sub>y β<sub>1</sub> que permiten pasar del bloque parabólico de esfuerzos del hormigón en elementos en flexión a uno rectangular y equivalente y encontrar luego los puntos del diagrama momento curvatura. Mediante este proceso se puede realizar cálculos manuales, pues se consiguen buenos resultados.
- Al diseñar secciones de hormigón armado, como vigas, se verifique que tengan la suficiente reserva de ductilidad, lo cual se puede construir con la ley constitutiva de Mander (1988) pues su curva se comporta de forma aproximada a la real capacidad de momento de una sección. Es preferible que no se use el modelo de Park (1982) para analizar secciones, pues da valores de ductilidad por curvatura exagerados, lo que implica valores de deformación muy altos y que se reflejarían en un gran daño en el elemento estructural.
- Para etapas académicas de aprendizaje se calculen diagramas de momentocurvatura con el método de los diagramas equivalentes pues, una vez integrada la ley constitutiva, permite obtener sin mayores complicaciones los valores de esfuerzo y deformación y, a partir de éstos, los puntos de curvatura y momento los cuales se aproximan a los que se obtienen con programas comerciales de análisis de estructuras.

# CAPÍTULO V

## 5.1. PRESUPUESTO

| $\mathbf{N}^{\circ}$ | CONCEPTOS                      | VALORES (USD) |
|----------------------|--------------------------------|---------------|
| 1                    | Transporte                     | 15.00         |
| 2                    | Desarrollo de la investigación | 12.00         |
| 3                    | Material bibliográfico         | 4.00          |
| 4                    | Copias                         | 3.00          |
| 5                    | Impresiones                    | 30.00         |
| 6                    | Adquisición de software        | 24.00         |
| 7                    | CDs                            | 5.00          |
| 8                    | Imprevistos (10%)              | 9.00          |
|                      | TOTAL                          | 102.00        |

## 5.2. CRONOGRAMA

| TIEMPOS<br>ACTIVIDADES                                      |   | Semanas |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
|-------------------------------------------------------------|---|---------|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
|                                                             | 1 | 2       | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Recopilación de información                                 | x | х       |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| Aplicación de las técnicas                                  |   |         | х | х |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| Entrevista y análisis de datos                              |   |         |   |   | х | х |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| Tema y planteamiento de problema                            |   |         |   |   |   |   | х | х |   |    |    |    |    |    |    |    |    |    |    |    |
| Desarrollo del marco teórico                                |   |         |   |   |   |   |   |   | х | х  |    |    |    |    |    |    |    |    |    |    |
| Visualización del alcance de estudio                        |   |         |   |   |   |   |   |   |   |    | х  | х  |    |    |    |    |    |    |    |    |
| Elaboración de hipótesis y<br>definiciones de variables     |   |         |   |   |   |   |   |   |   |    |    |    | х  | х  |    |    |    |    |    |    |
| Desarrollo y diseño de la investigación                     |   |         |   |   |   |   |   |   |   |    |    |    |    |    | х  | х  | х  | х  |    |    |
| Reporte de los resultados (conclusiones y recomendaciones ) |   |         |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | х  | х  |

### 5.3. BIBLIOGRAFÍA

- Aguiar, Roberto. ANÁLISIS SÍSMICO POR DESEMPEÑO. Valle de los Chillos, 2003.
- Aguiar, Roberto. «Método de las fibras (apuntes de clases de dinamica de estructuras).» 2014.
- Aguiar, Roberto. «Relación momento curvatura y vision 2000.» 2010.
- -. "Vulmerabilidad sísmica de un edificio de 16 pisos: relación momento curvatura." Il Congreso de Ciencia y Técnología. Quito: ESPE, 2012. 1 a 13.
- American Concrete Institute. Building Code Requirements for Structural Concrete 318-11. 2011.
- ASCE Task Committee on Desing Criteria for Composite Structures in Steel and Concrete. "Guidelines for desing of joints between steel beams an reinforced concrete columns." 1994.
- ASTM C469. "Standard test method for static and modulus of elasticity and poisson's ratio of concrete in compression." www.astm.org. 3 21, 2015. www.astm.org.
- Celi, Carlos. Análisis Paramétrico de la Fiabilidad del Modelamiento Sísmico en el Rango No Lineal, en Función al tipo de Modelamiento Empleado.

  Quito, 2014.
- Escamilla, Marco A. "ESTUDIO COMPARATIVO DE LAS TENDENCIAS ACTUALES DEL MÉTODO DEL EMPUJÓN PARA LA EVALUACIÓN DE ESTRUCTURAS RETICULARES." Tesis, México D.F., 2010.
- Gobierno del Distrito Federal. "Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto." México D.F., 2004.
- Gonzáles. «Procedimiento para obtener las gráficas de momento curvatura en vigas de concreto reforzado.» 2005.
- HERNÁNDEZ J, HERNÁNDEZ J A,. Hormigón Estructural Diseño por Estados Límites. La Habana: Félix Varela, 2013.
- Hernández Santana, Juan José, and Julio Alberto Hernández Caneiro. Hormigón Estructural. Vol. 1. La Habana, 2013.

- Hognestad, E., N. W. Hanson, and D. McHenry. "Concrete Stress Distribution in Ultimate Strength Design." *ACI Journal Proceedings* 52, no. 4 (1955): 455-479.
- Mander B, Priestley M, Park R,. "Theoretical stress-strain model for confined concrete." *Journal of Structural Engineering*, 1988: Vol 114, No. 8 pp 22686.
- MANDER J. Seismic design of bridge piers. New Zealand: Ph.D Thesis, Department of Civil Engineering, University of Canterbury, 1988.
- Mieles, Yordy. "Comportamiento del momento curvatura mediante una seccion rectangular del modelo de Park et al (1982)." Ecuador, 2015.
- Mieles, Yordy, and Julio Hernández C. "COMPORTAMIENTO DE SECCIONES DE HORMIGÓN SOMETIDAS A FLEXIÓN REFORZADAS CON BARRAS DE ACERO O PRF." 2015.
- Mieles, Yordy, Emilio Castañeda, and Alberto Caneiro. *ESTUDIO DE ALTERACIONES EN EL COMPORTAMIENTO ESTRUCTURAL DE VIGAS DE HORMIGÓN ARMADO CON NUDOS HÍBRIDOS MEDIANTE EL EMPLEO DE GRÁFICOS MOMENTOCURVATURA*. Vols. 21,1. La Habana, 2016.
- NILSON A, DARWIN D, DOLAN C,. *Desing of Concrete Structures*. New York: Mc Graw Hill, 2010.
- Norma Ecuatoriana de la Construcción. 2015.
- PARK R, PRIESTLEY M, GILL W,. "Ductility of square-confined columns." *J. Struct. Div.*, 1982: 929-950.
- Park, R., and T. Paulay. Reinforced Concrete Structures. New York, 1975.
- Todeschini, C. E., A. B. Bianchini, and C. E. Kesler. *Behavior of Concrete Columns Reinforced with High Strength Steels*. Vol. 61. ACI Journal Proceedings, 1964.
- Vargas, M. G., and A. J. González. "Procedimiento para obtener gráficas momento-curvatura en vigas de concreto reforzado." *Ingeniería Revista Académica*, 2005.
- Villagrán, A., and I. E. "Modelo esfuerzo-deformación para elementos de concreto reforzado que cumple con la hipótesis de las NTC RCDF." *Concreto y Cemento. Investigación y Desarollo*, 2004: 32-39.

Whitney, C. *Plastic Theory oj Reinforced Concrete Design*. Vol. 107. Proceedings ASCE, 1940.

#### 5.4. ANEXOS

Deducción de las ecuaciones de  $\alpha 1$  y  $\beta 1$  para el modelo de Park por medio de Integración

$$\sigma_c' = \begin{cases} kf_c' \left[ \frac{2\varepsilon_c'}{k\varepsilon_0} - \left( \frac{\varepsilon_c'}{k\varepsilon_0} \right)^2 \right] & ; & \varepsilon_c' < k\varepsilon_0 \\ kf_c' [1 - m(\varepsilon_c' - k\varepsilon_0)] & ; & k\varepsilon_0 < \varepsilon_c' < \varepsilon_u \\ 0.2 \ kf_c' & ; & \varepsilon_c' > \varepsilon_u \end{cases}$$

$$m = \frac{0.5}{\varepsilon_{50u} + \varepsilon_{50h} - k\varepsilon'_c}$$
 ;  $\varepsilon_u = k\varepsilon_0 + \frac{0.8}{m}$ 

$$\varepsilon_{50u} = \frac{3 + 0.29f_c'}{145f_c' - 1000}$$

$$\varepsilon_{50h} = \frac{3}{4} \rho_v \sqrt{\frac{b''}{s}} \qquad \rho_v = 1 + \frac{\rho_v \cdot f_{yv}}{f_c'} \qquad k = 1 + \frac{\gamma_v \cdot f_{yv}}{f_c'}$$

#### • Primera rama

$$\int_{0}^{k\varepsilon_{0}} k f_{c}' \left[ \frac{2\varepsilon_{c}'}{k\varepsilon_{0}} - \left( \frac{\varepsilon_{c}'}{k\varepsilon_{0}} \right)^{2} \right] d\varepsilon'_{c} = \alpha \beta_{1} f_{c}' \varepsilon_{c}'$$

$$kf_c' \left[ \frac{2}{k\varepsilon_0} \frac{{\varepsilon_c'}^2}{2} - \frac{1}{k^2 {\varepsilon_0}^2} \frac{{\varepsilon_c'}^3}{3} \right] = \alpha \beta_1 f_c' \varepsilon_c'$$

$$f_c' \frac{(\varepsilon_c')^2}{\varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right] \Big|_0^{\varepsilon_c} = \alpha \beta_1 f_c' \varepsilon_c'$$

-----

$$\frac{\int \sigma_c' \cdot \varepsilon_c' \cdot d\varepsilon_c'}{\int \sigma_c' \cdot d\varepsilon_c'} = \varepsilon_c' \left( 1 - \frac{\beta_1}{2} \right)$$

$$\sigma_c' \varepsilon_c' = k f_c' \left[ \frac{2 \cdot \varepsilon_c'}{k \varepsilon_0} - \left( \frac{\varepsilon_c'}{k \varepsilon_0} \right)^2 \right] \varepsilon_c'$$

$$=kf_c'\left[\frac{2(\varepsilon_c')^2}{k\varepsilon_0}-\frac{(\varepsilon_c')^3}{k^2(\varepsilon_0)^2}\right]d\varepsilon_c'$$

$$= \int \frac{f_c'}{\varepsilon_0} \left[ 2(\varepsilon_c')^2 - \frac{1}{k\varepsilon_0} (\varepsilon_c')^3 \right] d\varepsilon_c'$$
$$= \frac{f_c'}{\varepsilon_0} \left[ \frac{2(\varepsilon_c')^3}{3} - \frac{1}{k\varepsilon_0} \frac{(\varepsilon_c')^4}{4} \right]$$

$$= \frac{f_c'(\varepsilon_c')^3}{\varepsilon_0} \left[ \frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0} \right]$$

$$\frac{\frac{f_c'(\varepsilon_c')^3}{\varepsilon_0} \left[ \frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0} \right]}{\frac{f_c'(\varepsilon_c')^2}{\varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right]} = \varepsilon_c' \left( 1 - \frac{\beta_1}{2} \right)$$

$$\varepsilon_c' \frac{\frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0}}{1 - \frac{\varepsilon_c'}{3k\varepsilon_0}} = \varepsilon_c' \left( 1 - \frac{\beta_1}{2} \right)$$

$$\frac{\frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0}}{1 - \frac{\varepsilon_c'}{3k\varepsilon_0}} = 1 - \frac{\beta_1}{2}$$

$$\beta_{1} = 2 \left[ 1 - \frac{\frac{2}{3} - \frac{\varepsilon_{c}'}{4k\varepsilon_{0}}}{1 - \frac{\varepsilon_{c}'}{3k\varepsilon_{0}}} \right]; para \ \varepsilon_{ci}' < k\varepsilon_{0}$$

\_\_\_\_\_

$$\frac{f_c'(\varepsilon_c')^2}{\varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right] = \alpha \beta_1 f_c' \varepsilon_c'$$

$$\alpha_1 = \frac{\varepsilon_c'}{\beta_1 \, \varepsilon_0} \left[ 1 - \frac{\varepsilon_c'}{3k\varepsilon_0} \right] ; para \, \varepsilon_{ci}' < k\varepsilon_0$$

#### • Segunda rama

$$\begin{split} \int \sigma'_{c} \, d\varepsilon'_{c} &= \int_{0}^{k\varepsilon_{0}} k f'_{c} \left[ \frac{2\varepsilon'_{c}}{k\varepsilon_{0}} - \left( \frac{\varepsilon'_{c}}{k\varepsilon_{0}} \right)^{2} \right] d\varepsilon'_{c} + \int_{k\varepsilon_{0}}^{\varepsilon'_{c}} k f'_{c} [1 - m(\varepsilon'_{c} - k\varepsilon_{0})] d\varepsilon'_{c} ; para \quad 0 < \varepsilon'_{c} < \varepsilon_{u} \end{split}$$

$$&= k f'_{c} \left[ \frac{2}{k\varepsilon_{0}} \frac{{\varepsilon'_{c}}^{2}}{2} - \frac{1}{k^{2}\varepsilon_{0}^{2}} \frac{{\varepsilon'_{c}}^{3}}{3} \right] \Big|_{0}^{k\varepsilon_{0}} + k f'_{c} \left[ \varepsilon'_{c} - m \frac{{\varepsilon'_{c}}^{2}}{2} + m k \varepsilon'_{c} \varepsilon_{0} \right] \Big|_{k\varepsilon_{0}}^{\varepsilon'_{c}}$$

$$&= f'_{c} \frac{{\varepsilon'_{c}}^{2}}{\varepsilon_{0}} \left( 1 - \frac{{\varepsilon'_{c}}}{3 k \varepsilon_{0}} \right) \Big|_{0}^{k\varepsilon_{0}} + k f'_{c} \varepsilon'_{c} \left( 1 - m \frac{{\varepsilon'_{c}}}{2} + m k \varepsilon_{0} \right) \Big|_{k\varepsilon_{0}}^{\varepsilon'_{c}}$$

$$&= f'_{c} \frac{(k \varepsilon_{0})^{2}}{\varepsilon_{0}} \left( 1 - \frac{k \varepsilon_{0}}{3 k \varepsilon_{0}} \right) + k f'_{c} \varepsilon'_{c} \left( 1 - m \frac{{\varepsilon'_{c}}}{2} + m k \varepsilon_{0} \right) - k f'_{c} (k\varepsilon_{0}) \left( 1 - m \frac{k\varepsilon_{0}}{2} + m k \varepsilon_{0} \right)$$

$$&= f'_{c} k^{2} \varepsilon_{0} \left( 1 - \frac{1}{3} \right) + k f'_{c} \varepsilon'_{c} \left( 1 - m \frac{{\varepsilon'_{c}}}{2} + m k \varepsilon_{0} \right) - f'_{c} k^{2} \varepsilon_{0} \left( 1 - m \frac{k\varepsilon_{0}}{2} + m k \varepsilon_{0} \right)$$

$$=\frac{2}{3}f_c'k^2\varepsilon_0\ + kf_c'\varepsilon_c'\left(1-m\ \frac{\varepsilon_c'}{2}+m\ k\ \varepsilon_0\ \right)-f_c'k^2\varepsilon_0\left(1+m\ \frac{k\varepsilon_0}{2}\right)=\alpha\ \beta_1f_c'\ \varepsilon_c'$$

$$\begin{split} &\frac{\int \sigma_c' \, \varepsilon_c' d\varepsilon_c'}{\int \sigma_c' d\varepsilon_c'} = \varepsilon_c' \left( 1 - \frac{\beta_1}{2} \right) \\ &= \int_0^{k\varepsilon_0} k f_c' \left[ \frac{2\varepsilon_c'}{k\varepsilon_0} - \frac{\left(\varepsilon_c'\right)^2}{(k\varepsilon_0)^2} \right] \varepsilon_c' d\varepsilon_c' + \int_{k\varepsilon_0}^{\varepsilon_c'} k f_c' [1 - m(\varepsilon_c' - k\varepsilon_0)] \varepsilon_c' d\varepsilon_c' \\ &= \int_0^{k\varepsilon_0} k f_c' \left[ \frac{2\left(\varepsilon_c'\right)^2}{k\varepsilon_0} - \frac{\left(\varepsilon_c'\right)^3}{k^2\varepsilon_0^2} \right] d\varepsilon_c' + \int_{k\varepsilon_0}^{\varepsilon_c'} k f_c' \left[ \varepsilon_c' - m(\varepsilon_c')^2 + mk\varepsilon_c'\varepsilon_0 \right] d\varepsilon_c' \\ &= \int_0^{k\varepsilon_0} \frac{f_c'}{\varepsilon_0} \left[ 2\left(\varepsilon_c'\right)^2 - \frac{\left(\varepsilon_c'\right)^3}{k\varepsilon_0} \right] d\varepsilon_c' + \int_{k\varepsilon_0}^{\varepsilon_c'} k f_c' \left[ \varepsilon_c' - m(\varepsilon_c')^2 + mk\varepsilon_c'\varepsilon_0 \right] d\varepsilon_c' \\ &= \frac{f_c'}{\varepsilon_0} \left[ \frac{2}{3} \left(\varepsilon_c'\right)^3 - \frac{1}{k\varepsilon_0} * \frac{\left(\varepsilon_c'\right)^4}{4} \right]_0^{k\varepsilon_0} + k f_c' \left[ \frac{\left(\varepsilon_c'\right)^2}{2} - m \frac{\left(\varepsilon_c'\right)^3}{3} + mk\varepsilon_0 \frac{\left(\varepsilon_c'\right)^2}{2} \right]_{k\varepsilon_0}^{\varepsilon_c'} \\ &= \frac{f_c'\left(\varepsilon_c'\right)^3}{\varepsilon_0} \left[ \frac{2}{3} - \frac{\varepsilon_c'}{4k\varepsilon_0} \right]_0^{k\varepsilon_0} + k f_c'\left(\varepsilon_c'\right)^2 \left[ \frac{1}{2} - \frac{m\varepsilon_c'}{3} + \frac{mk\varepsilon_0}{2} \right]_{k\varepsilon_0}^{\varepsilon_c'} \end{split}$$

Reemplazando límites:

$$=\frac{f_{c}^{'}(k\varepsilon_{0})^{3}}{\varepsilon_{0}}\left[\frac{2}{3}-\frac{k\varepsilon_{0}}{4k\varepsilon_{0}}\right]+kf_{c}^{'}(\varepsilon_{c}^{'})^{2}\left[\frac{1}{2}-\frac{m\varepsilon_{c}^{'}}{3}+\frac{mk\varepsilon_{0}}{2}\right]-kf_{c}^{'}(k\varepsilon_{0})^{2}\left[\frac{1}{2}-\frac{mk\varepsilon_{0}}{3}+\frac{mk\varepsilon_{0}}{2}\right]$$

$$\begin{split} &= \frac{5}{12} f_{c}^{'} k^{3} (\varepsilon_{0})^{2} + k f_{c}^{'} (\varepsilon_{c}^{'})^{2} \left[ \frac{1}{2} - \frac{m \varepsilon_{c}^{'}}{3} + \frac{m k \varepsilon_{0}}{2} \right] - k^{3} f_{c}^{'} (\varepsilon_{0})^{2} \left[ \frac{1}{2} - \frac{m k \varepsilon_{0}}{3} + \frac{m k \varepsilon_{0}}{2} \right] \\ &= \frac{5}{12} f_{c}^{'} k^{3} (\varepsilon_{0})^{2} + k f_{c}^{'} (\varepsilon_{c}^{'})^{2} \left[ \frac{1}{2} - \frac{m \varepsilon_{c}^{'}}{3} + \frac{m k \varepsilon_{0}}{2} \right] - k^{3} f_{c}^{'} (\varepsilon_{0})^{2} \left[ \frac{1}{2} + \frac{1}{6} m k \varepsilon_{0} \right] \end{split}$$

$$\frac{\frac{5}{12}f_{c}^{'}k^{3}(\varepsilon_{0})^{2}+kf_{c}^{'}(\varepsilon_{c}^{'})^{2}\left[\frac{1}{2}-\frac{m\varepsilon_{c}^{'}}{3}+\frac{mk\varepsilon_{0}}{2}\right]-k^{3}f_{c}^{'}(\varepsilon_{0})^{2}\left[\frac{1}{2}+\frac{1}{6}mk\varepsilon_{0}\right]}{\frac{2}{3}f_{c}^{'}k^{2}\varepsilon_{0}+kf_{c}^{'}\varepsilon_{u}\left(1-m\frac{\varepsilon_{u}}{2}+mk\varepsilon_{0}\right)-f_{c}^{'}k^{2}\varepsilon_{0}\left(1+m\frac{k\varepsilon_{0}}{2}\right)}=\varepsilon_{c}^{'}-\frac{\varepsilon_{c}^{'}\beta_{1}}{2}$$

$$\beta_1 = \frac{2}{\varepsilon'_c} \left\{ \varepsilon'_c - \frac{\frac{5}{12} f'_c k^3 (\varepsilon_0)^2 + k f'_c (\varepsilon'_c)^2 \left[ \frac{1}{2} - \frac{m \varepsilon'_c}{3} + \frac{m k \varepsilon_0}{2} \right] - k^3 f'_c (\varepsilon_0)^2 \left[ \frac{1}{2} + \frac{1}{6} m k \varepsilon_0 \right]}{\frac{2}{3} f'_c k^2 \varepsilon_0 + k f'_c \varepsilon_u \left( 1 - m \frac{\varepsilon_u}{2} + m k \varepsilon_0 \right) - f'_c k^2 \varepsilon_0 \left( 1 + m \frac{k \varepsilon_0}{2} \right)} \right\}$$

$$\beta_{1} = \frac{2}{\varepsilon_{c}'} \left\{ \varepsilon_{c}' - \frac{\frac{5}{12}k^{2}(\varepsilon_{0})^{2} + (\varepsilon_{c}')^{2} \left[ \frac{1}{2} - \frac{m\varepsilon_{c}'}{3} + \frac{mk\varepsilon_{0}}{2} \right] - k^{2}(\varepsilon_{0})^{2} \left[ \frac{1}{2} + \frac{1}{6}mk\varepsilon_{0} \right]}{\frac{2}{3}k\varepsilon_{0} + \varepsilon_{c}' \left( 1 - m \frac{\varepsilon_{c}'}{2} + m k \varepsilon_{0} \right) - k\varepsilon_{0} \left( 1 + m \frac{k\varepsilon_{0}}{2} \right)} \right\}$$

$$\beta_1$$
 para  $0 < \varepsilon_c' < \varepsilon_u$ 

$$\frac{2}{3}f_c'k^2\varepsilon_0 + kf_c'\varepsilon_c'\left(1 - m\frac{\varepsilon_c'}{2} + mk\varepsilon_0\right) - f_c'k^2\varepsilon_0\left(1 + m\frac{k\varepsilon_0}{2}\right) = \alpha\beta_1f_c'\varepsilon_c'$$

$$\alpha_1 = \frac{1}{\beta_1 \, \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 + k \varepsilon_c' \left( 1 - m \, \frac{\varepsilon_c'}{2} + m \, k \, \varepsilon_0 \right) - k^2 \varepsilon_0 \left( 1 + m \, \frac{k \varepsilon_0}{2} \right) \right\}$$

#### • Tercera Rama

Para  $\varepsilon_c' > \varepsilon_u$ 

$$\int \sigma'_c d\varepsilon'_c = \int_0^{k\varepsilon_0} kf'_c \left[ \frac{2\varepsilon'_c}{k\varepsilon_0} - \left( \frac{\varepsilon'_c}{k\varepsilon_0} \right)^2 \right] d\varepsilon'_c + \int_{k\varepsilon_0}^{\varepsilon_u} kf'_c [1 - m(\varepsilon'_c - k\varepsilon_0)] d\varepsilon'_c + \int_{\varepsilon_u}^{\varepsilon_{ci}} 0.2 \ k f'_c d\varepsilon'_c$$

= 
$$\Delta 1 + \Delta 2 + 0.2 k f_c' \varepsilon_c' |_{\varepsilon_u}^{\varepsilon_{ci}}$$

$$= \Delta 1 + \Delta 2 + 0.2 k f_c' \varepsilon_{ci} - 0.2 k f_c' \varepsilon_u$$

$$\frac{\int \sigma_{c}^{'} \varepsilon_{c}^{'} d\varepsilon_{c}^{'}}{\int \sigma_{c}^{'} d\varepsilon_{c}^{'}} = \varepsilon_{c}^{'} \left( 1 - \frac{\beta_{1}}{2} \right)$$

$$=\int_{0}^{k\varepsilon_{0}}kf_{c}^{'}\left[\frac{2\varepsilon_{c}^{'}}{k\varepsilon_{0}}-\frac{\left(\varepsilon_{c}^{'}\right)^{2}}{(k\varepsilon_{0})^{2}}\right]\varepsilon_{c}^{'}d\varepsilon_{c}^{'}+\int_{k\varepsilon_{0}}^{\varepsilon_{u}}kf_{c}^{'}\left[1-m(\varepsilon_{c}^{'}-k\varepsilon_{0})\right]\varepsilon_{c}^{'}.d\varepsilon_{c}^{'}+\int_{\varepsilon_{u}}^{\varepsilon_{ci}}\left(0.2\ kf_{c}^{'}\right)\varepsilon_{c}^{'}d\varepsilon_{c}^{'}$$

$$= \Delta 1 + \Delta 2 + 0.1 k f_c' \varepsilon_c'^2 \Big|_{\varepsilon_u}^{\varepsilon_{ci}}$$

= 
$$\Delta 1 + \Delta 2 + 0.1 k f'_{c} (\varepsilon_{ci})^{2} - 0.1 k f'_{c} (\varepsilon_{u})^{2}$$

$$y = \frac{\int_0^{k\varepsilon_0} \sigma ci * \varepsilon' c * d\varepsilon' c + \int_{k\varepsilon_0}^{\varepsilon u} \sigma c_2 * \varepsilon' c * d\varepsilon' c + \int_{\varepsilon u}^{\varepsilon ci} \sigma c_3 * \varepsilon' c * d\varepsilon' c}{\int_0^{k\varepsilon_0} \sigma ci * d\varepsilon' c + \int_{k\varepsilon_0}^{\varepsilon u} \sigma c_2 * d\varepsilon' c + \int_{\varepsilon u}^{\varepsilon ci} \sigma c_3 * d\varepsilon' c}$$

INTEGRAL 1

$$\frac{2k^2 * f'c * \varepsilon_0}{3}$$

**INTEGRAL 2** 

$$\int_{k\varepsilon_0}^{\varepsilon u} \sigma c 2 * d\varepsilon' c = k * f'c * \varepsilon u * \left[1 - \frac{m * \varepsilon_c}{2} + m * k * \varepsilon\right] - f'c * k^2 * \varepsilon_0 * \left[1 + \frac{1}{2} * m * k * \varepsilon_0\right]$$

**INTEGRAL 3** 

$$\int_0^{k\varepsilon_0} \sigma ci * d\varepsilon' c = \frac{5}{12} * f'c * k^3 * (\varepsilon_0)^2$$

**INTEGRAL 4** 

$$\int_{k\varepsilon_0}^{\varepsilon u} \sigma c_2 * \varepsilon' c * d\varepsilon' c = k * f' c * (\varepsilon_u)^2 * \left[ \frac{1}{2} - \frac{m * \varepsilon_u}{3} + \frac{m * k * \varepsilon_0}{2} \right] - k^3 * f' c * (\varepsilon_0)^2 * \left[ \frac{1}{2} + \frac{1}{6} * m * k * \varepsilon_0 \right]$$

**INTEGRAL 5** 

$$\int_{\varepsilon u}^{\varepsilon c i} \sigma c_3 * d\varepsilon' c = 0.2 * k * f'c * d\varepsilon' c = 0.2 * k * f'c * \varepsilon' c]_{\varepsilon u}^{\varepsilon c i} = 0.2 * f'c * k * \varepsilon' c - 0.2 * f'c * k * \varepsilon_u$$

INTEGRAL 6

$$\int_{\varepsilon u}^{\varepsilon c i} (0.2 * k * f'c) \varepsilon' c * d\varepsilon' c = 0.1 * k * f'c * (\varepsilon_c)^2]_{\varepsilon u}^{\varepsilon c i} = 0.1 * k * f'c * (\varepsilon_c)^2 - 0.1 * k * f'c * (\varepsilon_u)^2$$

$$\int \sigma c i * d\varepsilon' c = \frac{5}{12} * f' c * k^3 * (\varepsilon_0)^2 + k * f' c * (\varepsilon_u)^2 * \left[ \frac{1}{2} - \frac{m * \varepsilon_u}{3} + \frac{m * k * \varepsilon_0}{2} \right] - k^3 * f' c * (\varepsilon_0)^2 * \left[ \frac{1}{2} + \frac{1}{6} * m * k * \varepsilon_0 \right] + 0.1 * k * f' c * (\varepsilon_c)^2 - 0.1 * k * f' c * (\varepsilon_u)^2$$

$$\int \sigma c i * d\varepsilon' c = \frac{2}{3} * f' c * \varepsilon_0 * k^2 + k * f' c * \left[ 1 - \frac{m * \varepsilon_u}{2} + m * k * \varepsilon_0 \right] - k^2 * f' c * \left[ 1 + \frac{1}{2} * m * k * \varepsilon_0 \right] + 0.2 * k * f' c * (\varepsilon_c)$$

$$- 0.2 * k * f' c * (\varepsilon_u) = \alpha * \beta_1 * f' c * \varepsilon' c$$

$$\frac{\frac{5}{12} * f^{t}e * k^{\frac{3}{2}} * (\varepsilon_{0})^{2} + k * f^{t}e * (\varepsilon_{u})^{2} * \left[\frac{1}{2} - \frac{m * \varepsilon_{u}}{3} + \frac{m * k * \varepsilon_{0}}{2}\right] - k^{\frac{3}{2}} * f^{t}e * (\varepsilon_{0})^{2} * \left[\frac{1}{2} + \frac{1}{6} * m * k * \varepsilon_{0}\right] + 0.1 * k * f^{t}e * (\varepsilon_{c})^{2} - 0.1 * k * f^{t}e * (\varepsilon_{u})^{2}}{\frac{2}{3} * f^{t}e * \varepsilon_{0} * k^{\frac{3}{2}} + k * f^{t}e * \left[1 - \frac{m * \varepsilon_{u}}{2} + m * k * \varepsilon_{0}\right] - k^{\frac{3}{2}} * f^{t}e * \left[1 + \frac{1}{2} * m * k * \varepsilon_{0}\right] + 0.2 * k * f^{t}e * (\varepsilon_{c}) - 0.2 * k * f^{t}e * (\varepsilon_{u})}$$

$$\frac{\frac{5}{12}*f^{\prime}e*k^{3}*(\varepsilon_{0})^{2}+k*f^{\prime}e*(\varepsilon_{u})^{2}*\left[\frac{1}{2}-\frac{m*\varepsilon_{u}}{3}+\frac{m*k*\varepsilon_{0}}{2}\right]-k^{3}*f^{\prime}e*(\varepsilon_{0})^{2}*\left[\frac{1}{2}+\frac{1}{6}*m*k*\varepsilon_{0}\right]+0.1*k*f^{\prime}e*(\varepsilon_{c})^{2}-0.1*k*f^{\prime}e*(\varepsilon_{u})^{2}}{\frac{2}{3}*f^{\prime}e*\varepsilon_{0}*k^{2}+k*f^{\prime}e*\left[1-\frac{m*\varepsilon_{u}}{2}+m*k*\varepsilon_{0}\right]-k^{2}*f^{\prime}e*\left[1+\frac{1}{2}*m*k*\varepsilon_{0}\right]+0.2*k*f^{\prime}e*(\varepsilon_{c})-0.2*k*f^{\prime}e*(\varepsilon_{u})}$$

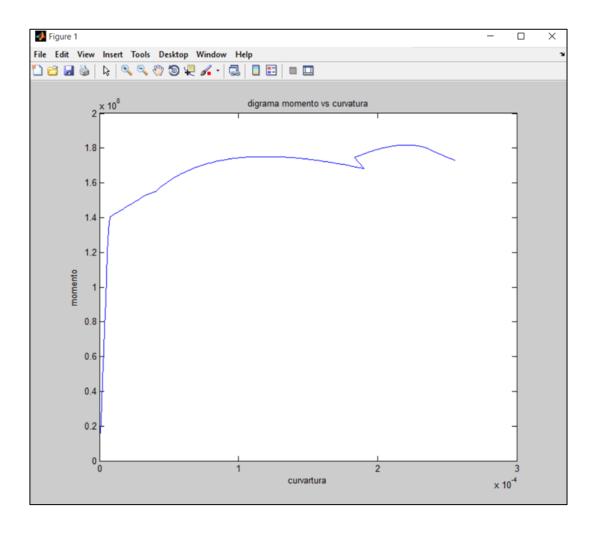
$$\frac{\frac{5}{12} * \frac{k^{\frac{3}{2}} * (\varepsilon_{0})^{2} + k * (\varepsilon_{u})^{2} * \left[\frac{1}{2} - \frac{m * \varepsilon_{u}}{3} + \frac{m * k * \varepsilon_{0}}{2}\right] - k^{\frac{3}{2}} * (\varepsilon_{0})^{2} * \left[\frac{1}{2} + \frac{1}{6} * m * k * \varepsilon_{0}\right] + 0.1 * k * (\varepsilon_{c})^{2} - 0.1 * k * (\varepsilon_{u})^{2}}{\frac{2}{3} * \varepsilon_{0} * \frac{k^{\frac{3}{2}}}{2} + k * \left[1 - \frac{m * \varepsilon_{u}}{2} + m * k * \varepsilon_{0}\right] - k^{\frac{3}{2}} * \left[1 + \frac{1}{2} * m * k * \varepsilon_{0}\right] + 0.2 * k * (\varepsilon_{c}) - 0.2 * k * (\varepsilon_{u})}$$

$$\beta_{1} = \frac{2}{\varepsilon_{c}'} \left\{ \varepsilon_{c}' - \frac{\frac{5}{12}k^{2}(\varepsilon_{0})^{2} + (\varepsilon_{u})^{2} \left[ \frac{1}{2} - \frac{m\varepsilon_{u}}{3} + \frac{mk\varepsilon_{0}}{2} \right] - k^{2}(\varepsilon_{0})^{2} \left[ \frac{1}{2} + \frac{1}{6}mk\varepsilon_{0} \right] + 0.1(\varepsilon_{c}')^{2} - 0.1(\varepsilon_{u})^{2} \right\}$$

$$\frac{2}{3}k\varepsilon_{0} + \varepsilon_{u} \left( 1 - m \frac{\varepsilon_{u}}{2} + m k \varepsilon_{0} \right) - k\varepsilon_{0} \left( 1 + m \frac{k\varepsilon_{0}}{2} \right) + 0.2\varepsilon_{ci} - 0.2\varepsilon_{u}$$

$$\alpha_1 = \frac{1}{\beta_1 \, \varepsilon_c'} \left\{ \frac{2}{3} \, k^2 \varepsilon_0 \, + k \varepsilon_u \left( 1 - m \, \frac{\varepsilon_u}{2} + m k \varepsilon_0 \, \right) - k^2 \varepsilon_0 \left( 1 + m \, \frac{k \varepsilon_0}{2} \right) + 0.2 k \varepsilon_{ci} - 0.2 k \varepsilon_u \right\}$$

# Programa en Matlab para el cálculo de momento curvatura con un modelo de hormigón confinado de Park y modelo trilineal del acero


```
function [alfa beta momento curvatura] = momento curvatura modelo trilineal
%calcula alfa y beta con el modelo de Park et \overline{al}. (1982)
%ver ecuaciones en las hojas de calculo de alfa y beta
§_____
%DATOS
             MODELO TRILINEAL DEL ACERO
Es=200000; %Es es el mod de elast del acero a tracción en MPa
            %Esh es el mód de elast último del acero en tracción en MPa
Esh=4446;
Esp=200000; %Esp es el mód de elast del acero en compresión en MPa
Eshp=4446;
            %Eshp es el mód de elast último del acero en compresión en
fy = 420;
           % input('\n ingrese fy en MPa:'); %fy es la fluencia del
acero a tracción
fyp=420; % Es la fluencia del acero en compresión en MPa
fsu=643;
           % Es la resistencia última del acero a tracción en MPa
fsup=643; % Es la resistencia última del acero a tracción en MPa
                                 esu= (fsu-fy+Esh*esh)/Esh
esy=fy/Es;
                 esh=0.015;
                                                                 %lev
del acero en tracción
esyp=fyp/Esp; eshp=0.015;
                                esup= (fsup-fyp+Eshp*eshp)/Eshp;
%ley del acero en compresión
%DATOS DEL HORMIGÓN
ec = 0.00; %ec es la deforación en el punto i
for i=1:500
   ec=ec+0.0001
% ec = input('\n ingrese epsilon prima c:'); %ec es la deforación en el
punto i
fc = 21; % input('\n ingrese fc en MPa:'); % fc es la resistencia maxima
del hormigón en MPa
% DATOS DE LA SECCIÓN
b = 300; % input('\n ingrese b en mm:');
h = 500; % input('\n ingrese h en mm:');
r = 60; %input('\n ingrese r en mm:');
As = 1004; %input('\n ingrese As en mm2:');
Asp = 603; %acero en compresión
        d=h-r; dp=h-d; %calcula bp=mm (es el ancho confinado) y d=mm
(peralte efectivo) bp=b-r; d=h-r;
fiest=10; s=100; %fiest=mm (es el diámetro de los estribos) s=mm (es la
separación entre estribos)
Asest=pi*fiest^2/4;longest=bp*2+d*2; %calcula el Asest=area del estribo
v longest=long del estribo
Ac=bp*d; %Ac calcula el área de hormigón confinado
8______
_____
%CALCULA EL COEFICIENTE ALFA Y BETA DE PARK
rov=Asest*longest/(Ac*s); %rov calcula el volumen de hormigón confinado
k=1+rov*fy/fc;% calcula el factor k de Park
eo=0.002; keo=k*eo;%eo es la deformación asociada al máximo esfuerzo k*fc
e50u=(3+0.29*fc)/(145*fc-1000); e50h=3/4*rov*sqrt(bp/s);
m=0.5/(e50u+e50h-keo); %m es la pendiente de la segunda rama de park
```

```
eu=k*eo+0.8/m; %eu es el inicio de la tercera rama de park
if ec>=0.0 & ec<=0.03 %si 0.03 fuera la máxima deformación posible para
hormigón confinado
%operaciones si es la primera rama
                                    if ec>=0 & ec<=0.03
if ec<=keo</pre>
   beta=2*(1-((2/3-ec/(4*k*eo))/(1-(ec/(3*k*eo)))));
    alfa=ec/beta/eo* (1-ec/3/k/eo);
%operaciones si es la segunda rama
elseif ec<=eu
    k^2*eo^2*(1/2+1/6*m*k*eo);
    denominadorbeta=2/3*eo*k+ec*(1-m*ec/2+m*k*eo)-k*eo*(1+1/2*m*k*eo);
    beta=2/ec* (ec-numeradorbeta/denominadorbeta);
    alfa=1/beta/ec*(2/3*eo*k^2+k*ec*(1-m*ec/2+m*k*eo)-
k^2*eo*(1+1/2*m*k*eo));
%operaciones si es la tercera rama
else
    a1=5/12*k^2*eo^2;
                       b1=eu^2*(1/2-m*eu/3+m*k*eo/2);
c1=k^2*eo^2*(1/2+1/6*m*k*eo); g1=0.1*ec^2; h1=0.1*eu^2;
    d2=2/3*eo*k;
                e2=eu*(1-m*eu/2+m*k*eo);
                                             f2=k*eo*(1+1/2*m*k*eo);
i2=0.2*ec; j2=0.2*eu;
   beta=2/ec*(ec-(a1+b1-c1+g1-h1)/(d2+e2-f2+i2-j2));
    alfa=1/beta/ec*(2/3*eo*k^2+k*eu*(1-m*eu/2+m*k*eo)-
k^2*eo^*(1+1/2*m*k*eo)+0.2*k*ec-0.2*k*eu);
end
else alfa=0; beta=0; 'alfa y beta = entrada ilegal de epsilon c'
end
% CALCULA LAS 9 CONDICIONES POSIBLES DE DEFORMACIÓN
%PRIMERA CONDICIÓN acero en tracción está en la primera rama y el de
compresión está en la primera rama
ax1=alfa*fc*beta*b;
                   bx1=(Asp*Esp+As*Es)*ec; cx1=-
(Asp*Esp*dp+As*Es*d)*ec;
cxx1=(-bx1+sqrt(bx1^2-4*ax1*cx1))/2/ax1;
                                              % cxx2 contiene la raiz
positiva de c
es1=(d-cxx1)/cxx1*ec;
                              %es1 calcula epsilon s deformación en el
acero traccionado
esp1=(cxx1-dp)/cxx1*ec;
                             %esp1 calcula epsilon prima s deformación
en el acero comprimido
%SEGUNDA CONDICIÓN
ax2=alfa*fc*beta*b;
                   bx2=(Asp*fyp+As*Es*ec); cx2=-As*Es*d*ec;
   cxx2=(-bx2+sqrt(bx2^2-4*ax2*cx2))/2/ax2;
                                                     % cxx2 contiene la
raiz positiva de c
es2=(d-cxx2)/cxx2*ec;
                              %es2 calcula epsilon s deformación en el
acero traccionado
esp2=(cxx2-dp)/cxx2*ec;
                             %esp2 calcula epsilon prima s deformación
en el acero comprimido
%TERCERA CONDICIÓN
ax3=alfa*fc*beta*b;
                    bx3=(Asp*fyp+Asp+Eshp*ec-Asp*Eshp*eshp+As*Es*ec);
cx3=-(Asp*Eshp*ec*dp+As*Es*ec*d);
   cxx3 = (-bx3 + sqrt(bx3^2 - 4*ax3*cx3))/2/ax3;
                                                   % cxx3 contiene la
raiz positiva de c
es3=(d-cxx3)/cxx3*ec;
                              %es3 calcula epsilon s deformación en el
acero traccionado
esp3=(cxx3-dp)/cxx3*ec;
                              %esp3 calcula epsilon prima s deformación
en el acero comprimido
%CUARTA CONDICIÓN
ax4=alfa*fc*beta*b; bx4=(Asp*Esp*ec-As*fy); cx4=-(Asp*Esp*dp*ec);
```

```
cxx4=(-bx4+sqrt(bx4^2-4*ax4*cx4))/2/ax4; % cxx4 contiene la
raiz positiva de c
es4=(d-cxx4)/cxx4*ec;
                            %es4 calcula epsilon s deformación en el
acero traccionado
esp4=(cxx4-dp)/cxx4*ec;
                            %esp4 calcula epsilon prima s deformación
en el acero comprimido
%QUINTA CONDICIÓN
ax5=alfa*fc*beta*b; cx5=-(Asp*fyp-As*fy);
                      % cxx5 contiene la raiz positiva de c
   cxx5=cx5/ax5;
es5=(d-cxx5)/cxx5*ec;
                             %es5 calcula epsilon s deformación en el
acero traccionado
esp5=(cxx5-dp)/cxx5*ec;
                            %esp5 calcula epsilon prima s deformación
en el acero comprimido
%SEXTA CONDICIÓN
ax6=alfa*fc*beta*b; bx6=(Asp*fyp+Asp*Eshp*ec-Asp*Eshp*eshp-As*fy);
cx6=-(Asp*Eshp*dp*ec);
   cxx6 = (-bx6 + sgrt(bx6^2 - 4*ax6*cx6))/2/ax6;
                                                   % cxx6 contiene la
raiz positiva de c
                            %es6 calcula epsilon s deformación en el
es6=(d-cxx6)/cxx6*ec;
acero traccionado
esp6=(cxx6-dp)/cxx6*ec;
                            %esp6 calcula epsilon prima s deformación
en el acero comprimido
%SEPTIMA CONDICIÓN
ax7=alfa*fc*beta*b; bx7=(Asp*Esp*ec-As*fy+As*Esh*ec+As*Esh*esh);
cx7 = -(Asp*Esp*ec*dp+As*Esh*ec*d);
   cxx7 = (-bx7 + sqrt(bx7^2 - 4*ax7*cx7))/2/ax7;
                                                  % cxx7 contiene la
raiz positiva de c
es7=(d-cxx7)/cxx7*ec;
                             %es7 calcula epsilon s deformación en el
acero traccionado
esp7=(cxx7-dp)/cxx7*ec;
                            %esp7 calcula epsilon prima s deformación
en el acero comprimido
%OCTAVA CONDICIÓN
ax8=alfa*fc*beta*b; bx8=(Asp*fyp-As*fy+As*Esh*ec+As*Esh*esh);
cx8=As*Esh*ec*d;
   cxx8 = (-bx8 + sqrt(bx8^2 - 4*ax8*cx8))/2/ax8;
                                                   % cxx8 contiene la
raiz positiva de c
                             %es8 calcula epsilon s deformación en el
es8=(d-cxx8)/cxx8*ec;
acero traccionado
esp8=(cxx8-dp)/cxx8*ec;
                            %esp8 calcula epsilon prima s deformación
en el acero comprimido
%NOVENA CONDICIÓN
ax9=alfa*fc*beta*b; bx9=(Asp*fyp+Asp*Eshp*ec-Asp*Eshp*eshp-
As*fv+As*Esh*ec+As*Esh*esh);
cx9=-(Asp*Eshp*ec*dp+As*Esh*ec*d);
cxx9=(-bx9+sqrt(bx9^2-4*ax9*cx9))/2/ax9; % cxx9 contiene la raiz
positiva de c
es9=(d-cxx9)/cxx9*ec; %es8 calcula epsilon s deformación en el
acero traccionado
esp9=(cxx9-dp)/cxx9*ec;
                         %esp8 calcula epsilon prima s deformación
en el acero comprimido
%ELIGE LA CONDICIÓN CORRECTA PARA LA DEFORMACIÓN DEL ACERO
if es1<=esy & esp1<=esyp</pre>
                                             %si se culmple la primera
condición
   c=cxx1, es=es1, esp=esp1, 'c_lra_cond'
```

```
fsv=Es*es; fsvp=Esp*esp;
                                            %si se cumple la segunda
elseif es2<=esy & esp2<=eshp & esp2>esp
condición
   c=cxx2, es=es2, esp=esp2, 'c_2da_cond'
   fsv=Es*es; fsvp=fy
elseif es3<=esy & esp3>eshp %si se cumple la tercera condición
   c=cxx3, es=es3, esp=esp3, 'c 3ra cond'
   fsv=Es*es; fsvp=fyp+Eshp*(esp-eshp);
elseif es4<=esh & es4>esy & esp4<=esyp %si se cumple la cuarta</pre>
condición
             es=es4, esp=esp4, 'c 4ta cond'
   c=cxx4,
    fsv=fy, fsvp=Esp*esp
elseif es5<=esh & es5>esy & esp5>esyp & esp5<=eshp %si se
cumple la quinta condición
                        esp=esp5, 'c 5ta cond'
   c=cxx5, es=es5,
    fsv=fy; fsvp=fyp;
elseif es6<=esh & es6>esy & esp6>eshp %si se cumple la sexta
condición
             es=es6, esp=esp6, 'c 6ta cond'
   c=cxx6,
    fsv=fy; fsvp=fyp+Eshp*(esp-eshp);
elseif es7>esh & esp7<=esy
                                              %si se cumple la
septima condición
   c=cxx7, es=es7, esp=esp7, 'c 7ma cond'
   fsv=fy+Esh*(es-esh); fsvp=Esp*esp;
elseif es8>esh & esp8>esyp & esp8<eshp
                                            %si se cumple la
octava condición
   c=cxx8, es=es8, esp=esp8, 'c_8va_cond' fsv=fy+Esh*(es-esh); fsvp=fyp;
else es9>esh & esp9>esh
                                              %si se cumple la novena
condición
   c=cxx9, es=es9, esp=esp9, 'c 9na cond'
   fsv=fy+Esh*(es-esh); fsvp=fyp+Eshp*(esp-eshp)
if es>esu
   'la deformación del acero es mayor que la permisible'
%COMPRUEBA QUE LA SUMA ES CERO
Ccp=alfa*beta*c*fc*b; %fuerza de compresión del hormigón
Csp=Asp*fsvp; %fuerza del acero a compresión
Ts=As*fsv: %fuerza del acero a tracción
Ts=As*fsv;
                      %fuerza del acero a tracción
suma_fuerza=Ccp+Csp-Ts;
%CALCULA MOMENTO Y CURVATURA
momento(i) = Ccp*(c-0.5*beta*c) + Csp*(c-d) + Ts*(d-c);
curvatura(i) =ec/c;
end
plot (curvatura, momento)
xlabel ('curvartura'); ylabel ('momento')
title ('digrama momento vs curvatura')
%grid on
%clc
```

## El programa reporta la figura siguiente:

